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Preface

This dissertation is the result of my application of quasilinear
plasma theory to the high altitude nuclear explosion debris-air coupling
problem. Although I have written the dissertation with this problem in
mind, the plasma theory and numerical techniques are applicable to a wide
range of physical problems in geophysics and in controlled thermonuclear
reactor research. I have written the dissertation with both the reader
familiar with quasilinear theory and the reader with only a 1imited
knowledge of plasma physics in mind. The experienced reader can omit
the physical discussion sections in Chapter II and all of the derivations
in the Appendices without loss in continuity. These discussions are
primarily for the inexperienced reader wishing to learn quasilinear
theory. I have assumed that this reader, who wishes to understand all
of the derivations, has some basic knowledge of plasma physics including
Vlasov theory. If not, the references given throughout the dissertation
contain the necessary information. For the reader interested in the
computer program, I have included an outline of the entire program in
Appendix G.

I wish to thank the people at the Air Force Weapons Laboratory, the
Naval Research Laboratory, and the Air Force Institute of Technology
whose assistance was fnvaluable in completing my work. I especially
thank my coworkers; J. Jannf, G. Cable, D. Hollars, G. Radke, and G.
Kuller for guidance and for allowing me to work almost full time on the
dissertation. I am grateful to H. Murphy, M. Havens, D. Amos, and R.
Conley for providing the routines which are incorporated into the
program. I thank Drs. P. Nielsen and K. Papadopoulos for their invalu-

able technical assistance. I am grateful to N. Calder whose fine art
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1 work appears in the figures. 1 especially thank C. Fields, M. Harville,
G. Perea, and M. Barnett for their endless hours of typing assistance.
Finally, I thank my wife, Conra Sue, and my children; Eric, Carl, and

Katrina; for their physical and moral assistance in completing this

dissertation.

Robert C. Backstrom
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Notation

atomic weight (atomic mass units)
magnetic field (gauss)
diffusion coefficient (cmz/secs)

electric field (statvolt/cm)

spectral wave energy (ergs in 3D or ergs/cm in 2D)
current density (statcoulomb/cmz-sec)

pressure (dynes/cmz)

temperature (degrees Kelvin)

volume (cm3)

computer velocity mesh translation constant (cm/sec)

initial relative velocity between the debris and air ion
beams (cm/sec)

species average velocity (cm/sec)

energy (ergs) or energy density (ergs/cms) .

i_siig -2
plasma dispersion function = 7== féﬁing_

YXT -
-m

sound speed (cm/sec) =
speed of light (cm/sec) = 3.00(1010)
thermal speed of species « (cm/sec)

thermal speed of species « in wave propagation direction
(cm/sec)

elementary charge (statcoulomb) = 4.8(10'10)
distribution function (sec3/cm6 in 3D or secZ/cm5 in 2D)
=1

wave propagation vector (cm'l) = 277 /wavelength

mass (gm)

-2
nurber density (cm ~)
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number of elementary charges (q = 1 means singly charged)
time (sec)

computer velocity mesh coordinates

computer velocity mesh scale constants (cm/sec)

particle velocity (cm/sec)

ion acoustic speed (cm/sec) =1[E§;§;_i
= / 8*
Alfvén wave speed (cm/sec) = pre =
wJ\c

T
wave phase velocity (cm/sec) =T:Z;3jz

particle location (cm)
particle location (cm)
denotes particle species (degris, air, or electrons)
1S e Mg Ce
B*/ s

ratio of specific heat at constant pressure to that at
constant volume

electron beta =

plasma dielectric of species

angle between the streaming direction and the wave propaga-
tion direction (degrees)

Boltzmann constant (erg/degree Kelvin) = 1.38(10'16

)
gt ar
electron gyro radius vs wavelength parameter = — Aéa;/oLa

Dzbye length for species « (cm) = q‘/a)p‘
1) O Avem /€

g > -

qoznaaBa g na(Va-Vo)
pi = 3.

. AX Tex
average electron gyro (Larmor) radius (cm) =7/ =g

v“-
fon gyro radius (cm) = —=- e
A
-1
pD
angle between velocity point of interest and wave
propagation direction (degrees)

anomalous collision frequency (sec”

time normalization constant (sec) = w

complex wave frequency (radians/sec)
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0 gyro frequency (sec'l) = A <

wp plasma frequency (sec'l) --7/;;;;;:———_1- i

1.
@y lower hybrid frequency (cm” 1 - cops [+ ‘:

0 subscript denotes zero order quantity

1 subscript denotes first order quantity

Se i s ln

; i subscript 1imaginary part or fon species
r subscript real part

D, A, ore
subscript species: debris, air, or electrons

ol subscript species
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Abstract

Improved calculations of the anomalous transport coefficients due
to the fon-fon two-stream plasma instability are presented. The coeffi-
cifents describe the transfer of momentum and energy between the fon
species by the electric fields generated by unstable waves. The calcula-
tfons use electrostatic quasilinear theory in two dimensions to trace
the time evolutions of the two ion species. The evolutions are continued
until the transport coefficients reach their maximum values. The evolu-
tions are done for homogeneous plasmas with warm ion beams and a single
hot electron background distribution. The electrons may or may not be
magnetized by a uniform magnetic field perpendicular to the fon streaming
motion. Because the calculations are two dimensionaf. the unstable ion-
fon waves do not necessarily propagate in the streaming direction. The
presentation includes derivations of quasilinear theory from Vlasov's
and Poisson's equations and several physical discussions regarding the
quasilinear equations. The analytical forms of the anomalous transport
coefficients are also derived. A detailed discussion of the computer
program, IONION, which was written to numerically solve the quasilinear
equatfons is included. Several test evolutions are done for plasmas
which could characterize the early time nuclear debris cloud surrounding
a nuclear detonation fn the terrestrial exosphere. The two fon species
represent the nuclear debris fons in the expanding cloud and the fonized
ambient air being overrun by the debris. The results of the evolutions
fndicate that a fair amount of momentum transfer from the debris to the
air occurs when the relative velocity between them is less than the

characteristic wave phase velocity of the plasma, the fon acoustic speed

xiid
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or the Alfvén speed (respectively for unmagnetized or magnetized elec- :

trons). On the other hand, 1ittle transfer occurs when the relative

velocity is higher than the characteristic speed.
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ANONMALOUS TRANSPORT COEFFICIENTS DUE TO THE
ION-ION TWO-STREAM PLASMA MICROINSTABILITY

I. Introduction

f Exospheric nuclear bursts inject large numbers of radioactive
| fission debris nuclef into the terrestrial magnetosphere. These radio- i
active nuclei decay emitting copious numbers of energetic electrons

& . i which often are trapped in the magnetosphere. These energetic electrons
Wh (beta particles) supplement the naturally occurring Van Allen radiation
[I i belts greatly enhancing the flux (e1ectr0ns/cm2/sec) of high energy

| electrons. (A general discussion of the magnetosphere and trapped radia- A

tion is in Ref 1.) Because the beta electrons typically have energies q
of the order of 1 MeV, satellites passing through the enhanced belts can

be damaged. This damage problem is particularly severe to the large

f

|

i i scale integrated circuitry being introduced on current and future ]
! satellites as these components often have a relatively Tow radiation

I damage threshold. The problem is of great interest to the agencies who
manage satellite systems, and much effort has been expended to improve
the beta radiation prediction capability.

The topic of this dissertation is an outgrowth of the following

¥ . facet of the beta electron injection process: the possible mixing of
the nuclear debris with exospheric air ifons by the ion-ion instability. :
This instability could occur during the initial outward expansion of the |
debris. This expansion lasts about a second after the detonation of the

nuclear device. If the instability occurs and successfully causes the

I Ao

mixing, the air would accelerate to the debris expansion velocity. i
This acceleration of the air is called debris-air coupling. The coupling

problem is discussed in more detail in the next section of this chapter.




—————

— T————

AFIT/DS/PH/78-1

In the sections of this chapter following that discussion, the disserta-
tion calculation of the fon-fon instability is outlined. Although the
dissertation addresses only the fon-fon instability in the context of
debris-air coupling, the calculative procedure is applicable to a wide
range of physical problems in the fields of geophysics and controlled
thermonuclear reactor research.

Debris-Air Coupling Problem

The SPECTER/SAFER computer program, which has been developed jointly
by the Air Force Weapons Laboratory (AFWL) and the Lockheed Palo Alto
Research Laboratory, calculates the accumulated radiation fluence in
electrons per square centimeter received by a satellite from a given
exospheric nuclear burst. (The base of the exosphere is considered to
be at an altitude of 100 km.) The program first calculates the initial
expansion of the nuclear debris as it pushes against the residual atmo-
sphere and the magnetic field of the earth to form a debris-air bubble.
The cross section of a typical bubble which surrounds the burst point is
shown in Fig. 1. The program then calculates the extension of the ion-
ized debris along the magnetic field 1ines affected by the bubble. This
extension proceeds until the majority of the debris following the field
Tines ends up in the upper atmosphere of the earth at the conjugate
regions shown in the figure. The program calculates the beta decay of
the debris as it moves and then calculates the formation of the radiation
belts. Finally, the program computes the fluences received by satellites
moving through the belts.

One of the factors causing uncertainties in the final fluences
calculated by the program is the uncertain fraction of the ambient air

which is accelerated to the debris expansfon velocity. This acceleration
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OUTWARD VOLUME
EXPANSION OF
INTEREST

BURST POIN T\
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CONJUGATE
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MAGNETIC
FIELD LINES

Fig. 1. The Formation of a Debris-Air Bubble in the Exosphere.
during the initial bubble formation is the result of a transfer of
momentum and energy from the expanding debris ions to the air atoms which
have been fonized by x-rays and ultraviolet radiation from the bomb.

1f the amount transferred is small, the debris expands outward
impeded only by the magnetic field forming a relatively large bubble. If
the reverse holds, most of the air is accelerated to the expansion
velocity. This accumulation of moving mass rapidly slows the outward
expansion so the bubble is smaller. The resulting radiation belts are
then smailer and more intense significantly affecting the fluences

received by orbiting satellites. For example, a sample calculation has

it _bcicincinic 4 L P Sttt e
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shown that the radius of the bubble from a one kiloton detonation at 400
kilometers is cut in half when the fraction of air coupled to the debris
1s increased from zero to unity (Ref 2).

The actual fraction of debris-air coupling s calculated by KLYSMA,
a large hydrodynamic computer program written by the Naval Research
Laboratory (NRL). (Examples on the nature of hydrodynamic theory and
some references on the subject are in Chapter II of the dissertation.)
The coupling cannot be due to conventional binary collisions in which
the debris and air ions simply collide with each other. At the air jon
densities characteristic of even a fully fonized exosphere, the average
distance an individual debris fon travels between binary collisions is
of the order of hundreds of kilometers. This distance is larger than a
typical debris-air bubble. However, the coupling can be due to collective
interactions between electromagnetic fields and the plasma species:
debris, air, and electrons. In collective interactions, large numbers of
the plasina particles collectively participate to transfer momentum and
energy among them via the fields. The program KLYSMA includes several
of these interactions by incorporating anomalous transport coefficients
into its hydrodynamic equations. The term "anomalous" means the trans-
port coefficients, which appear in the hydrodynamic equations in the same
manner as those due to ordinary binary collisions, actually refer to
collective interactions.

One of the most important of the collective interactions causing
coupling is the fon-ion two-stream plasma microinstability (Ref 3: 1-2).
In a plasma instability, available energy from a nonequilibrium feature
is explosively converted into rapidly growing electromagnetic waves.

These waves then alter the plasma tending to drive it toward an equilib-
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rium configuration. The energy source for the fon-ion two-stream insta-
bility s the relative velocity between the debris and air fons. The
two fon specfes form the streams or beams of this instability, and the
growing waves tend to reduce their relative velocity. The term "micro-
fnstability" means the external appearance of the plasma s unchanged

by this instability. Rather, the instability alters the velocity dis-
tributions of the fons. (A velocity distribution describes the probabil-
ity that a plasma particle is traveling at a given velocity. Typically,
the probability distribution is fn a gaussian shape--the Maxwell-Boltzman
distribution. The average velocity of the gaussian is the beam velocity,
and the spread around the mean is the thermal velocity which is related
to the temperature. Each plasma specfes has its own distribution, and
the integral of its distribution over all pcssible velocities equals the
species density in particles per unit volume.)

Dissertation Calculation

The anomalous transport coefficients from the fon-ion instability
have been included in KLYSMA. The coefficients are obtained from one-
dimensfonal calculations which assume all of the growing electromagnetic
fields generated by the instability propagate in the radial direction
(the local expansion direction). For reasons which are discussed later,
these one-dimensional calculations are inadequate for large expansion
velocities.

Thus, the objective of this dissertation is to calculate improved
anomalous transport coefficients due to the ion-ion two-stream plasma
microinstabilfty. The plasma parameters used in the calculations such
as the species densities, magnetic field strengths, temperatures, and

relative velocities are chosen to be representative of those which could

AT IR W
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be found in the solution of a debris-air coupling problem. The calcula-
tions are done simulating both large and small expansion velocities. In
the next few sections, the general nature of the dissertation calculations
is outlined. First, the method used to obtain the anomalous coefficients
is described. Next, the type of plasma and the assumptions used are
outlined. And finally, how the dissertatioﬁ advances the state of the

art is explained.

Calculative Method. The calculative method is to solve for wave-

particle interactions the set of electrostatic quasilinear equations
described in the next chapter. In quasilinear theory, a spectrum of weak,
unstable waves is assumed to slowly modify the spatially averaged velocity
distributions of the plasma species. As the averaged distributions
change, the oscillation frequency and wave amplitude growth rate of each
of the unstable wave modes in the spectrum slowly change. Eventually,
the modifications saturate when the waves can no longer change the
distributions. .

The analytical set of equations is solved numerically on a Control
Data Corporation (CDC) 7600 computer using a computer program expressly
written for this task. A particle simulation calculation is not done
because the analytical approach saves computer time and gives better
physical insight. The computer solution follows the changes of the
species distributions with time. This following of the changes in time
is called the evolution of the plasma. Periodically during the evolution,
the wave mode frequencies and growth rates are updated by solutions of
the dispersion relation, one of the equations described in the next
chapter. The calculation is called quasilinear because linear plasma

theory, the solutions of the dispersion relation, is used not only for
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the inftial species distributions but also for distributions which have
been evolved in time,

This dissertation includes the evolution of the species distributions
for plasmas which generate unstable fon-ion waves. The distributions are
evolved in time until the growing transport coefficients, which are
related to the wave energies, peak and then begin to decline indicating
the approach to quasilinear saturation. Saturation of the ion-ion insta-
bitity can occur in the debris-air coupling problem because the typical
instability growth time of about one microsecond is much shorter than
the typical bubble expansion time. The transport coefficients return to
zero at saturation, but quasilinear theory is then no longer valid. The
dissertation calculations, therefore, give upper 1imits to the coeffi-
cients to help determine whether debris-air coupling is possible and to
help estimate the coupling rate. The evolutions are necessary to
determine the maximum values of the transport coefficients because these
values cannot be accurately estimated from the initial growth rates of
the unstable waves. Two different plasmas generating waves with the
same growth rates can couple quite differently. An example of this is
in Chapter 1V,

Plasma Type. The transport coefficients are found for the following
type of plasma: (1) The species distributions are initially spatially
homogeneous so the calculation represents what is taking place in a
small volume in the mixing region near the outer edge of the debris
bubble. (See Fig. 1.) The few-kilometer-thick mixing region is much
smaller than the bubble size and is where the debris-air mixing takes
place. The homogeneous approximation is relatively good when the un-

stable mode wavelengths and the coupling length (the distance the debris
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moves during the evolution to saturation) are much less than the mixing
region size. (2) There are no ambient electric fields. (3) A uniform
magnetic field is in the z direction which is perpendicular to the debris
streaming in the x direction. If the debris expansion velocity is
approximately equal to or greater than the Alfvén speed, the magnetic
field of the earth is nearly perpendicular to the local expansion
direction nearly everywhere in the mixing region which forms the edge of
the bubble. This occurs because the A1fvén speed is the speed a low
frequency disturbance can propagate in a magnetized plasma. (This speed
is discussed further in Chapter II.) The bubble expansion is such a low
frequency disturbance, and as a result, the terrestrial field often piles
up on the outside of the bubble as shown in Fig. 1. (The field cannot
easfly penetrate the interfor of the bubble because it is filled with a
hot, nearly perfectly conducting plasma.) Therefore, the chosen plasma
magnetic field configuration can reasonably represent the compressed
field of the earth in a small volume fn the mixing region. (4) The
debris and air ions are assumed to be initially in separate Maxwellian
velocity distributions with the relative velocity between them being the
bubble expansion velocity. These distributions are "warm," meaning that
the fon thermal velocities may be comparable to the relative velocity.
Also, the fon distributions may each have a separate temperature in the
x and z directions. The densities, atomic weights, and fonization levels
of the fon specfes are not restricted although the densities will usually
be comparable because experfence has shown that most of the coupling
occurs at that time (Ref 4). (5) A1l of the electrons are assumed to be
in a single background Maxwellian distribution possibly with different

x and z direction temperatures. These electrons from both ion species
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are assumed to have been mixed together by some faster acting process

such as an electron-ion instability. Their distribution thermal veloci-
ties will be larger than the jon relative velocities in agreement with the
results of electron-ion instability computer simulations (Refs 5 and 6).
(6) The dissertation calculation assumes that each jon species is fully
jonized at a given ionjzation level. No neutral particles are included.
These approximations are reasonable because most of the jons of each
species in a hot plasma tend to be at the same ionization level and
because collisions are ignored so neutral particles cannot influence the
jons.

Calculation Assumptions. Several basic assumptions are made in the

solution of the quasilinear equations. First, the equations are assumed
to be valid, meaning that the species distributions change relatively
slowly because the wave electromagnetic fields are relatively weak. This
condition permits the use of perturbation theory because the changes in
the distributions duriég their evolutions are always perturbations to a
known zero order, time independent solution. (See Ref 7: 66-67 for a
typical example of perturbation theory.) Quasilinear theory neglects
small, high order effects such as the coupling of energy from one wave
mode into another. Each wave mode is assumed to remain independent from
all of the rest.

The calculation is done in two dimensions. The velocity space
distributions of the ions are evolved in the 0 plane interacting
with plane waves having propagation directions in the kx-kz plane. Slab
geometry, not cylindrical symmetry, has been assumed for the jon distri-

butions and the waves so their coordinates are strictly Cartesian. This

means the shape of the jon distributions and the nature of the wave
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spectrum are unchanged by a translation in the y direction. The calcula-
tion would have been one dimensional if the waves propagated only in the
kx direction and interacted with distributions which were functions of
vx only. The reason why the calculation has to be done in two dimensions
is that for large relative velocities the unstable wave modes propagate
nearly perpendicular to the ion streaming direction. -

The electrons are "adiabatic,"” meaning their distribution does not
change with time. The inftial type of plasma is chosen so the fon-ion
instability dominates over electron-ion instabilities such as the ion
acoustic or the modified two-stream instability. The ion-ion instability
coes not affect the electron distribution so it always is the original
Maxwellian.

The two dimensionality of the calculation is relaxed for the elec-
trons when the magnetic field significantly affects their motions. 1In
these magnetized cases, their motions around the field in the Vx'vy
plane are averaged assuming cylindrical symmetry. This process is valid
when the wave frequencies are much less than the electron gyro frequency.
(A gyro frequency, which is defined in the next chapter, is the rate a
charged particle orbits around a magnetic field line. See also Ref 7:
153-156.) Because the electrons are adiabatic, the only change to the
quasilinear equations when the field becomes significant is to the elec-
tron dielectric term in the wave dispersion relation.

The calculation is assumed to be electrostatic, meaning the magnetic
field of each wave vanishes because the curl of its electric field is
zero. The electric field of an electrostatic wave is always in the wave
propagation direction. For the magnetized cases, a test criterion is

evaluated to see if the neglect of the electromagnetic terms in the
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dispersion relation introduces a significant amount of error. Electro-
static wave modes often grow much faster than electromagnetic modes so
they can be expected to dominate the evolution (Ref 3: 29).

The ifons are always assumed to be "unmagnetized," meaning they do
not see the magnetic field. This approximation is a good one as long as
the wave frequency is much greater than the ion gyro frequencies, and the
fon gyro radii are much greater than the mode wavelengths and the
coupling Tength.

Relativistic effects are ignored. The relative velocities of
interest are at least two orders of magnitude less than the velocity of

1ight.

Advancement of the State of the Art. The complete two-dimensional

quasilinear evolutfons which are done in this dissertation advance the
state of the art. Calculations for the ion-fon instability have been

done for two cold, equally dense beams of the same ion species (Refs 8
and 9). The calculations in Reference 8 are done in one dimension using
hydrodynamic theory which ignores the effects of the species temperatures.
Stability is predicted for large relative velocities. The computer
simulation calculations in Reference ¢ are done for a magnetic field free
plasma and for a fon to electron mass ratio of 25. The Landau damping
and/or growth effects (which are explained in the next chapter) on the
waves due to the nonzero thermal velocities of the ion distributions are
not adequately included in either of these results. Conversely, the
dissertation calculations erphasize these effects. Also, the dissertation
calculations can be done for cases where the two fon beams have different
densitiec, types of particles, temperatures, and ionization levels.

Cases where the electrons are magnetized or unmagnetized can be evolved

11
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in two dimensions. This two dimensionality of the dissertation calcula-
tions permits the use of unstable wave modes which propagate in directions
other than the streaming direction and permits the following of the time
evolutions of the species distributions in two dimensions.

Interestingly, before the quasilinear evolutions could be done,
linear theory (the use of the dispersion relation for the initial distri-
butions) had to be developed in sufficient generality to be of use in the
quasilinear evolutions. A multi-dimensional magnetic-field-free disper-
sion relation solution for warm fon beams has been done (Ref 10).

Certainly, no large scale numerical solution of the quasilinear
equations has been done to include as many effects as are included in the
dissertation calculations. The program written to do these calculations
was a major undertaking, and none 1ike it exists. These calculations
evolve particles both resonant and nonresonant with the waves (Resonant
particles have velocities approximately equal to the wave phase velocities
as will be explained later.), include the temperatures of the ion beams,
include the electron temperature, account for two dimensionality, and
include an ambient magnetic field. The availability of a computer with
the speed of the CDC 7600 so that the millions of necessary integrations
could be done in a reasonable amount of time was extremely helpful in
allowing this degree of completeness.

The above discussion regarding the advancement of the state of the
art completes the introduction of the topic of this dissertation. First,
the background motivation of this topic, the exospheric nuclear detona-
tion debris-air coupling problem, was presented. Mext, the dissertation
objective and the calculative methods used to reach that objective were

described. Then, the type of plasma and the calculation assumptions
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were presented. And finally, why this dissertation is a significant
advance in the field of plasma physics was explained.

The rerainder of the dissertation is as follows: In the next
chapter, the equations of quasilinear theory are presented, and their
physical significances are explained. In Chapter III, the solution
procedure is described. In Chapter IV, the results of the dissertatio;
calculations are presented, and their physical significances are

explained. Finally, in the last chapter, the results are summarized and

recommendations for further study are made.
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II. The Equations of Quasilinear Theory

In this chapter, the equations for electrostatic quasilinear wave-
particle interactions are presented. Most of the algebraic detafis in
the derivations are included in several appendices. Several additional
derivations are also included in this chapter to give the reader a feel
for what the equations mean physically.

Quasilinear Equations

The equations of electrostatic quasilinear theory governing the
evolution of the debris and air distributions are derived from a simul-
taneous solutfon of Vlasov's and Pofsson's equations (Ref 11: 27 and 34):

%+;,%+&[3+M]éﬁ=o (1)

ik

oAx ox My c
oo
S%E = ‘fﬂ'gi.d-i{:&—;{«f (2)
where 7{,‘(/?/\'51)= distribution function of species «
= 7@,(/6-',1) + 7(.(,()}',;;) ) (3)
E = electric fleld = E, (4,4 (4)
B - magnetic field = E:, (5)
£ = magnitude of the electron charge = /<! (6)
7.,‘ = pumber of charge units and sign of charge (7)

The symbol « denotes the plasma species: debris, $1r. or electrons. The

particle distributions are normalized so

M‘o

o0
= nurber density = SJJ‘- f"" (8)
-~ oD

The subscripts 0 and 1 denote zero order and first order quantities
respectively. The equations are in the CGS-Gaussian system of units.

These units are used exclusively throughout the dissertation. Note there
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are actually three Vlasov equations in the fon-fon instability problem.
One each 1s for the debris, air, and electrons. In the Vlasov equations
for the ions, the magnetic field is set equal to zero. In the electron
Vlasov equation, the field {s retained for the cases where the electrons
are magnetized. Otherwise, the field is neglected for the electrons as
well because it {s then insignificant. These latter cases are called ihe
field-free cases because none of the species is influenced by the
magnetic field.

The Vlasov equation, Eqn (1), fs a special case of the total
derfvative with respect to time of the distribution in Eqn (3). This
distribution fs a function of the variables X, V, and t. The general
nature of the Vlasov equation is more apparent if the reader recalls
that velocity is the time derivative of distance and acceleration is the
time derivative of velocity. The acceleration is written in terms of
the electric and magnetic fields causing the acceleration. The total
time derivative 1s zero because the plasma is collisfonless. The distri-
bution is written i{s two parts: The first part is the zero order,
spatially homogeneous term which veries very slowly with time. The
second part is the small, rapidly varying firc<t order perturbation to the
zero order term. The perturbation is caused by the interaction of the
plasma particles with the waves, and thus, the spatfal and temporal
variations of this second term are of the order of the wavelength and
oscillation perfod of a typical wave mode. Vlasov's equation must be
solved simultaneously with lMaxwell's equations. Because the waves are

electrostatic, only Poisson's equation, Eqn (2), is needed.

Field-Free Equations. The field-free quasilinear equations are

derived following Drummond and Pines (Ref 12) and Bernstein and
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Englemann (Ref 13). Their approach is to spatially Fourier transform
Poisson's equation and the spatially averaged, 1inearized Vlasov's equa-
tion and then solve the results using a Green's function. The details
of this derivation are in Appendix A. An alternate derivation where

correlation theory is used can be found in Reference 14. The resulting

I—Z%:Lw‘ L. g = o (9)
% e - [I-Zf--w(l:#)] '

equations are

dfes (P, 4D _ % -[73;(/:7, . 9,/_,‘.(3‘»‘:#)} (10)

oz

QECAL 5, (ZDELD  w

A% bt E(LD) AL i (4D

D (~+,4)= ?77'&::? _:é )").A,é‘w,. (_:é_, .

o e ) my 2'44 [(A;—NA(—AIJ‘)>1~QJ;LCZJ})]A (12)
where A =,27~7f/wave1 ength (13)

w (A £ = complex wave o’ ) i
4 I;r'equenc,y = (A4 e («A,f) (12)

£ («Z,f) = spectral wave 4 | E(-A.0HE(L LD

—

energy (ergs) = 7207, " “cam )3 &7 (15)
The integration procedure j‘. means the integrals in Eqns (9) and (12)
are taken so the results are analytically continuous across the W, axis
of the complex wave frequency plane. This procedure, equivalent to
integrating along the Landau contour, is covered in Reference 15. This
reference also has an excellent alternate derivation of Eqn (9).

The four quasilinear equations, Eqns (9) to (12), form a set which

16
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must be solved simultaneously to evolve the fon distributions. Equation
(9) is the linear dispersion relation which determines the real and

-h
iraginary parts of the waves corresponding to a given wave k. The real

part is the oscillation frequency, and the imaginary part is the growth

T

rate. A positive imaginary part corresponds to a growing unstable wave,
and a negative imaginary part corresponds to a damped stable mode. -
; Throughout the dissertation, only the fastest growing unstable mode, if
f ' any, at each wave k is Tocated and used. Equation (10) is a diffusion
L equation in velocity space. This equation describes the slow evolution
of the species distributions due to the waves. The dyadic diffusion
coefficient which is a function of time and of the spatial variables is
i given by Eqn (12). Note each of the ion species has its own separate
diffusion equation and diffusion coefficient. The diffusion equation
for the electrons is not used because they are adiabatic. The only

f ' coupling between the species is due to the waves which are solutions of
: the dispersion relation. The time rate of change of the wave energy in
[ each mode is given by Eqn (11).

The diffusion dyad becomes very large when

o Bz oeon (A A) (16)

because Wp (A, A) > wy (A, 4D (17)
The particle velocities where Eqn (16) holds define the resonant regions

of the ion distributions because

T R P _— 2

-—

A7) = vave phase velocity = —3%,/: = /A';-/m%i%-l— (18)

——

where ¥ is the angle between k and V. This resonance also dominates

WO -

the behavior of the dispersion relation. The physical significance of

this resonance between the wave phase velocity and the particle velocity
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is covered later in the section on Landau dampfing/growth. HNote also

from Eqn (11), the wave mode energies change exponentially with time.
Therefore, the diffusion coefficient has a strong time depeidence via

the wave energies. These strong dependences of the diffusion coefficient
on position in velocity space and on time make Eqn (10) particularly

difficult to solve.

The quasilinear equations conserve matter, momentum, and energy.
The proof of this is done by taking the first three velocity moments of
Eqn (10) as shown in Appendix B.

Equations with a Magnetic Field. Because the electrons are assumed

to be adiabatic and the fons are assumed to be unmagnetized, the only
quasilinear equation that changes when the magnetic field becomes
important is the dispersion relation, Eqn (9). This equation is of the
form:

|- > €, = © (19)

o
where €, is the plasma dielectric for species . The ion dielectrics

are unchanged with the addition of the magnetic field and the electron

dielectric becomes (Ref 16: 158-234)

2
€, = —P=_ Ten PR~ l _ Tea
* /‘.z C.nl/x T.c.! ( 2 ’) Az 7/5642 Z (‘(0) 77(2

A [ Tox
Y ﬁcca Az[( Tt.z (w+ﬂa>—ﬂ¢>z (d')

+(_%:; (e = Sigys _m)Z (o(-,)]

(k, not near zero)
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2 2
6 = __c:_ﬂi 2 ____'{1_.‘__
or T o ot ot (k, near zero)  (20)
vhere Wpe = electron plasma 477'/»4,,_21'
frequency = 5 (21)
Cox, p = electron thermal speed
’ in the x, z direction = )._(_Z-:‘_ixz_a_ (22)
M
SL, = electron gyro
= frequency = -,/-':—””-—é_i-.'—l- (23)
£
co+ A, +
vl - =~ N = 0, - !
e ﬁ/é—z Ct 2 i (24)
(,(m = plasma dispersion -zt
/Z' ) function = —'—f”(?- =£ (25)
I A (S
R 29

average electron gyro z/ &ﬂ-ﬁﬁ'
n

L . ]
SLa (Larmor) radius =
2Z
Equation (20) is derived in Appendix C by averaging the electron motion

in the vx-v.y plane around the magnetic field and by assuming

/47 = o (28)
The derivation assumes the electrons are adiabatic so they remain in
their original Maxwellian distribution. The well known plasma disper-
sion function tabulated by Fried and Conte (Ref 17) results from this
assumption.

The magnetized dispersion relation in the form given by Eqns (9)
and (20) is valid when

N <<l €< N, (29)

\ A
AL | dius = = _— 1ing length (30
_Pui = fon gyro radius e 59 7 coupling leng (30)
A 44 (31)

where V1 is the average streaming velocity of an ion species and _.l‘l1 is
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an fon gyro frequency. The reasons for the first two of these conditions
were mentioned in Chapter I. Equation (31) insures the average electron
gyro radius is much less than the components of the mode wavelengths in

the x direction so the relatively simple form of the dielectric given in

F Eqn (20) can be used.
Analytical Form of the Field-Free Dielectrics. When the ions are
f in their original Maxwellian distributions, an analytical form of their
T .:’ dielectrics exists. This same form exists for field-free electrons.
; ! This form results when a coordinate rotation procedure is used to
evaluate the integral in Eqn (9) The dielectrics are from Appendix D: j
i | &= 7\,41 T 27 (2. (32)
i where @pu = [Hﬂ.m/::j“" ]'/1 (33)
i | e e 7es Mo« [ o, 2l il M ()
? The angle & is that between k and the x direction. The average velocity
of species & is V,, and the derivative of the plasma dispersion function
defined in Eqn (25) is 2’ (2,). ;
Anomalous Transport Coefficients |
f The anomalous transport coefficients are obtained by taking velocity

moments of the spatially averaged Vlasov equation. (See Eqn (A-9).)
The standard hydrodynamic equations result from this process except that

anomalous collision terms replace the normal terms due to binary

collisions. The results from Appendix E are (Ref 18: 1954-1955)
' 2
o

= V. x B.
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:-'Jj‘d«z,}; g(»z,a@ I’"[éd(‘"‘x’zn (36)
B3 7] - 2[4 ECE i feleate, 5]

+ (e, "Z'\—/:c>Im[éd(“’J ’Z)]} (37)

The right hand sides of these equations are the anomalous collision
terms. These terms respectively give the momentum and energy density
transfer rates to the species « due to the spectrum of wave modes.

Physical Meaning of the Quasilinear Equations

At this time in the dissertation, a few discussions about the
physical meanings of the quasilinear equations are presented. In the
sections that follow; an analogy between velocity space and normal
diffusion is drawn, the hydrodynamic equations (sometimes called the
fluid equations) are used to explain the general behavior of waves in
the plasma, and a simple explanation of Landau damping/growth is given.
At the end of the Tast section, there is a quick summary of the results
from these discussions.

Diffusion Analogy. An analogy can be drawn between velocity space

and ordinary diffusion. In ordinary diffusion, a particle random walks
its way from one location to another at a rate related to the diffusion

coefficient:
m

0 ~ # L Sec (38)

where V is the average speed of the particle and 1 1s the mean distance
it travels between collisions (mean free path). Diffusion is a good
approximation when the mean free path is much less than the characteristic

size of the system gradients. In velocity space diffusion, a particle

21




4 R ——— E———

AFIT/DS/PH/78-1

random walks its way from one part of the distribution to another at a

rate related to the diffusion coefficient:

D,‘,- = A-Z.r'(ﬂ‘ ?%T (39)
where Vv is the average acceleration and 'Iv is the velocity range,Av,
in which the acceleration takes place. Diffusion is a good approximation
when

AN €< Cypprm (40)

where the thermal speed, ¢ i{s the characteristic size of the grad-

therm®
{ents in velocity space.

The validity criterion given by Eqn (40) can be put in terms of an
energy criterion by assuming the change in the velocity of a particle is
caused by the absorption or emissicn of a quantum of wave energy. When
the wave energy is equated to the change in particle energy,

Woae ~ A \/\/r.,ﬁ,_[e = \/fo'.-n.l — Wi

i = ‘-ql:/m[(/v—..”;_’;" + A”)l_/‘;':."”""] (41)

~ MAM,":‘.ﬂ:‘;:-' (42)

~ o Dy C'fl\trm (43)

where Av <« Vinitial and Vinitial™ Stherm have been assumed. The
thermal energy of the particle is
2
V‘f;'“\crm -~ MC*}herm (44)

Therefore, when Eqn (40) is multiplied by c and Eqns (43) and (44)

therm
are used, the criterion becomes

Wiwe << Woidide therm (45) ]
Equation (45) is the weak turbulence criterion of quasilinear theory
implicit in the assumption that the wave fields are first order
quantities. The term turbulence does not refer to ordinary spatial %

turbulence. Rather, it refers to the turbulent random walk of a particle
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in velocity space caused by the interaction between it and many growing

unstable waves.

Waves in an Unmagnetized Plasma. The oscillation frequencies and

phase velocities that result from a solution of the unmagnetized disper-
sion relation are characteristic of the interaction of the ions in the
plasma with the electrons. The low frequency waves of interest charac~
teristically oscillate near the ion plasma frequency and propagate near
the fon acoustic speed. These properties can be seen from a simylta-
neous solution of the linearized hydrodynamic equations of continuity,
momentum transfer, and state for each plasma species with Poisson's
equation. The solution which includes a zero order streaming velocity,

-

v

figs 05| generalized from that of Seshadri (Ref 7: 98-105). These equa-

tions for an initially homogeneous plasma are

b;w wol5% A ] + Vi e U9
S é;i,, SN -)’V;u +_.-.—m,‘,3‘4£ =0(47)
—9%;"?' = qﬂ’gmd,?dk (49)

/Y X T,
where a_, = species « sound speed = "M;‘ (50)

The constant ¥ is the ratio of the specific heat capacity for constant

pressure over that for constant volume. When plane wave solutions of
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3 d-‘—wf>
the type .o."u‘ * are assumed and Eqns (46) to (49) are combined,

the following dispersion relation results:
'y

— —Epa = 51
|- 2 T g T ° s

This is the classical multibeam dispersion relation with extra terms

kzai which account for the finite temperatures of the beams.

In order to look at the characteristic interaction between a single
jon species and the electrons, the existence of only one type of ions
and

Vo = © (52)

are assumed. Therefore, Equation (51) becomes

2 A
| - £ - £ = o (53)
w? - Ara} et~ At

The solution of this equation for the low frequencies of interest is

: : + .l
i = | Xa XT. , Yo Xla Z-*M’”*] ) (54)
o Pl ge VY -3

The right hand side of Eqn (54) is the general form of the ion acoustic
speed for the ion species i. Thus, the wave propagates at the ion

acoustic speed. If only one ion species exists, it is singly ionized so

2 .
s (55)

Mo

and Te>> Ti; the often quoted expression for this spee¢ results:

B ,/
A, = [Y._-L_/y_)_(:;& o (56)

The speed is a function of the electron temperature and the ion mass and
is much slower than the electron sound speed (Eqn (50) witha& = e). The

phase velocity is slow because the 1ight, rapidly moving electrons
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generate electric fields which can only slowly transfer the electron
momentum to the heavy fons. (A more rigorous explanation is in Reference
7: 102-103.) The condition T, >> T, assures the acoustic waves are not
strongly Landau damped, a process which is described later in this
chapter.

The oscillation frequency is obtained directly from Eqn (53) by

assuming wp1<< wpe and a; = 0 (T,‘ <<Te)’ The result is

a5 2.
N
o = | + PC/A'LQI (57)
- |
2 :
Note i)é_ ~ “pe _.._l__ ; (58)
73 2 [P -3

¢
where ZD = electron Debye length = —= = ——X—L‘—,_ (59)

Therefore, when the wavelength is less than the electron Debye length,

the solution, Eqn (57}, is

B ez gy o

w = oeops (60)

When the reverse holds, the oscillation frequency is somewhat below the

ion plasma frequency. These two cases respectively correspond to
stationary (vph = 0) electrostatic ion oscillations and to the ion
acoustic wave with a phase velocity given by Eqn (56). To summarize the
above results for waves in an unmagnetized plasma, the characteristic
vwave phase velocity is near the ion acoustic speed, and the character-
istic oscilfatfon frequency is near or just below the ion plasma
frequency.

Waves in a Magnetized Plasma. The general nature of waves in a

magnetized plasma can be seen from fully electromagnetic magnetoionic
theory (Ref 16: 9-12). Magnetoionic theory results from the simulta-

neous solution of the hydrodynamic equation of momentum transfer, Eqgn
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(47), with Maxwell's equations. The thepry assumes a cold plasma which
means that the pressure term is set equal to zero. Also, no zero order
drift velocities exist. In the derivation below, the waves are assumed
to propagate in the x direction perpendicular to a uniform magnetic
field which is in the z direction.

The type of wave which is of interest is the transverse magnetic-
(TM) wave. This wave has its magnetic field parallel to the ambient
magnetic field. Its electric field 1ies in the x-y plane as shown in

Fig. 2. If the electric field is very nearly in the propagation

z
A -~
BO B wave
- y
k -
EWO ve

(in x—y plane)
X
Fig. 2. Transverse lagnetic Wave.
direction, the TM mode becomes nearly electrostatic. The dispersion

relation for this type of wave is (Ref 7: 328)

£ 1/
¢ A (€, + fz)(fl - gz)
2 2,
where §, = [ -~ w::f_‘n} - w.,.c‘_)_tfng (62)
_ ‘-4-’;; S - C-),,‘i' =didag
€2 7 Zlw - n3) (- nl) (63)

Again, the existence of only one species of fons has been assumed.
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Equatfon (61) can be rewritten as:

w - - )& - w“,)]

ch, G- or)(st - 50 (64)
E where ¢ = normalized oscillation o
frequency = —;,;e (65)
- 1/ Az
v = normalized cut off _ _N o “ne 0 P 6167
1 frequencies = 4 Xeope +z cop (€6) ’
) &,y = normalized upper hybrid Ko Wl 1/2% 1
resonant frequency =}/ + wops (67) i
i ' ¢,y = normalized lower hybrid N3 e 1 1/ 1
resonant frequency = e T 14T ] (€8)
P re

Note the frequencies in Eqns (65) to (68) are normalized to the electron

plasma frequency. The unnormalized form of the lower hybrid frequency is

Copa 1
= * -~
Sy 71+ “re/al {65}
The frequency range for ion wave modes satisfies:
- —2 — — 2 ?
Gt @y, o, &, (70) ]

so Eqn (64) becomes

2 +\v'A
2R B o [ ,,i'a—-—‘ - (14 e )] (71)
S Chy e “pa e
This equation is valid for the frequency range:
2
04 wt & iy (72)

The 1imit of Eqn (71) as the frequency goes to zero is

e

ML QA
w2 iy TE = Ay (73)

S (78)

YTroan, .

e i paiiabta

where Vaig = Alfven wave speed =

The ambient field is Bo‘ Therefore, the characteristic velocity of the

TM mode is the Alfvén speed. The mode propagates approximately at this

i
4
E
¢
]

speed except when the frequency is almost exactly at the Tower hybrid
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frequency (Ref 7: 330).

The transverse magnetic mode s 1que1y electrostatic when (Ref 7:

400-402)

IA:;C } > (f,'l) lfz) (75)

The electrostatic version of Eqn (61),

L 2
c"’pt wp.«
= —_ e,—————. - —t = o 76

results when Eqn (75) is assumed. The solutfon of this equation in the

frequency range given by Eqn (29) is

Cop.
o = 7==-L—— = oy (77)
| + wf-&"/_n.:

From Eqns (72) and (77), the characteristic frequency of oscillation of
the TM mode is close to but somewhat below the lower hybrid frequency.
The electrostatic criterion, Eqn (75), is approximately equivalent

to the criterion:

A C Woa
x =P
, ”r*l T g !

This equation is used to test the validity of the electrostatic approx-

imation for the waves in a magnetized plasma.

The lower hybrid frequency has an interesting physical significance.

The high density 1imit of Eqn (69),_(z_e/w pe“ 1, is

A
Wy = ’/—ﬂ.; e Z—;_—; T Y e (79)

In this 1imit, the lower hybrid frequency is the geometric mean of the

electron and fon gyro frequencies. This same result can be obtained by

setting the net electron polarization drift velocity across the magnetic
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field equal to the fon velocity. The electron velocity is (Ref 7: 201)

EA

< .

. _3xf  _ ~wcka n.) (80
A = - : (e << 1.)()

where harmonic time dependence for the electric field is assumed. The

fon velocity from Newton's second law,
A X = ¢ E (81)
A -

is

o 2 2 Ea 82
Vax T Sl To (ez)

For simplicity, the ions are assumed to be singly charged. When the
velocities in Eqns (80) and (82) are equated, the lower hybrid frequency
in Eqn (79) results. At this frequency, the electrons and ions drift
together so the plasma has no net current.

Unmagnetized vs Magnetized Waves. The usual method of determining

whether the plasma is magnetized or not is by its "beta" which is the
ratio of the particle pressure to the magnetic field pressure. Because

only the electrons may be magnetized, the relevant beta is that for the

electrons:
. thermal pressure _ %‘M.g M, C: (83)
ﬁ-‘- magnetic pressure B.‘/ e
vhere ﬁ‘ << | magnetized , (84)
or /e > > | unmagnetized (85)

The beta also relates the relative importance of the ion acoustic speed

and the Alfvén wave speed:

(86)
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of the magnetized equation, however, is determined by the parameter

given by Eqn (26). The relationship between beta and R s

> " -
2 2(i0 >(Amu) Ve (87)

where VR is the relative velocity in cm/sec and AMU is the debris atomic
weight in atomic mass units. In the derivation of Eqn (87), the following

were assumed:

VK 2 coa B (88)
. on > (2% DMG
|5l )7-/ 2 l—ﬁ———/)ﬂ f (89)

Equation (88) states the phase velocity is of the order of the relative
velocity. The reason for this will become apparent in the next section.
Equation (89) is true because the oscillation frequency is near the ion
plasma frequency or the lower hybrid frequency. Because the relative
velocities of interest are near 108 cm/sec, the magnetized equation .
validity criterion, Eqn (31), approximately corresponds to Eqn (84).
Therefbre. the choice of the magnetized versus the unmagnetized approach

is consistent with the use of the magnetized equatfons when Eqn (31)

holds and the use of the unmagnetized set when it does not.

Landau Damping/Growth. The growth rates of the modes in the un-

stable wave spectrum are mostly determined by a resonant interaction
tetween planes of constant wave phase and an unstable part of the ion
distributions. The unstable part for plasmas where the two ion beams
have a mocderately low relative velocity is shown in Fig. 3. The figure
is a top view of the two-dimensional debris and air distributions

plotted as contours in the velocity plane. (The reference frame in this
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PLANES OF CONSTANT
WAVE PHASE

UNSTABLE PART
OF DISTRIBUTION

Fig. 3. Resonance Between the Unstable Region and an Unstable Kave.
figure is obtained using a procedure described in the next chapter.) The
distance between the peaks of the debris and air "mountains" is the
relative velocity between the beams (the expansion velocity). A typical
wave mode propagating in the VeV2 plane is shown with its phase planes
roving Tn step with the unstable part. This resonance between the
particles in the unstable part of the distributions and the waves is the
resonance given by Eqn (18). Therefore, the unstable part is the
resonance region of the fon distributions. Because the region is near

the Vo axis, the angles ¢ and & are approximately equal. Also, the
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resonant particles have velocities which are approximately equal to the
approximately constant relative velocity. Thus,

/V?A
Cva B

VR ~ constant (90)

The resonant region is unstable because it has a positive slope
meaning that more plasma ions are at higher velocities than are at lower
velocities. The preferred equilibrium state of the plasma is a single
combined ion distribution with more ions at lower velocities than at
higher ones. Therefore, as the plasma relaxes toward its equilibrium
state, the excess particle kinetic energy must be given to the growing
waves. This Landau growth effect is the opposite of the usual Landau
damping process which occurs for stable plasmas (Ref 19: 383-392).

An interesting two-dimensional projection effect occurs with the
unstable waves. From Eqn (90), only the phase velocity over cos® has to
match the relative velocity. If the phase velocity is much smaller than
the relative velocity, the resonance can still occur if the angle 6 is
close to 90 degrees. This projection effect, shown in Fig. 3, allows a
wave propagating at the ion acoustic speed or the Alfven speed to
resonate with a pair of fon distributions having a much larger relative
velocity. As a matter of fact, the terms "low relative velocity plasma*®
and "high relative velocity plasma"” which are used throughout the dis-
sertation refer to this effect. In a low velocity plasma, the relative
velocity is about the same as the characteristic wave phase velocity:
either the fon acoustic speed or the Alfvén speed. The unstable waves
for this type of plasma propagate nearly in the streaming direction. 1In
a high velocity plasma, the relative velocity is much larger than the

characteristic wave velocity so the waves propagate at large angles to
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the streaming direction.
The exact resonant regions for large relative velocity plasmas 1ie

somewhat off the v, axis as shown in Fig. 4, a close up view of the air

PHASE PLANE

RESONANT REGIONS

foir

Fig. 4. Exact Resonant Regions.

distribution. The resonance between the typical wave mode and the reso-
nant region below the Vy axis is shown. The equivalent wave mode propa-
gating in the -8 direction resonates with the region above the axis.
(The symmetries of wave modes propagating in various directions is
discussed in Appendix F. See Eqns (F-39) to (F-42).) Because the wave
modes are electrostatic, their oscillating electric fields can be expected
to diffuse the ions primarily in the wave propagation directions. Hence,
the resonant regions 1ie approximately at the same angle to the Vy axis
as the fastest growing mode angle.

The unstable waves can only appear if the electrons do not freely
move around to cancel out the electric fields generated by the ion

motions. The electrons can be hindered by a high temperature or by the

applied magnetic field. Hot electrons have a relatively large Debye
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length (See Eqn (59).) so their shielding effect on the ion generated
fields is reduced. Therefore, for the unmagnetized cases, unstable wave
modes can be expected for plasmas where the electron Debye length is
comparable to the mode wavelengths. For the magnetized cases, unstable
modes propagating approximately perpendicular to the magnetic field can
exist for a much colder electron distribution. This occurs because the
field inhibits the electron motion perpendicular to it. The angular
range of these modes around the streaming direction would be relatively
small because the cold electrons can freely move along the magnetic field.
The allowed free motion of the electrons along the field also explains
why electromagnetic effects tend to reduce the growth rates of waves in
2 magnetized plasma. The wave magnetic field of an electromagnetic wave
bends the ambient magnetic fie&d allowing the electrons to move more
easily along it. (See also Ref 20.)

As a summary, several general conclusions can be drawn from the
discussions in the above sections. They are as follows:

(1) Equation (10) is a diffusion equation in velocity space.

(2) The wave mode oscillation frequencies are determined by the
plasma parameters such as density and magnetic field strength.

(3) The mode wavelengths for a given plasma are determined by the
relative velocity between the debris and the air.

(4) The growth rates of the wave modes are determined by the shape

of the fon distributions and the relative mobility of the electrons.
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IT1I. The Numerical Solution Procedure

In this chapter, the general solution procedure for the quasilinear
equations is described. First, the reference frame chosen for the
solution is presented. Next, the procedure used to solve the equations
is described. Then, the recasting of the equations into a form suitable
for numerical solution--by no means a trivial process--is covered. And
finally, the computer program is described. As before, many of the
details are relegated to the appendices.

Before these discussions are started, an important notational
distinction must be made: From this point on in the dissertation, the
term "distribution™ can either refer to the individual species velocity
distributions as before, or it can refer to the type of plasma as a
whole. The appropriate meaning will always be clear from the context.
Usually, the word "distribution™ (singular) will refer to the type of
plasma, and the word "distributions” (piural) will refer to the plasma
species.

Plasma Distribution

A typical assumed initital plasma distribution in an earth station-
ary reference frame is shown in Fig. 5. The figure shows the nuclear
debris ions and the air ions superimposed on the hot electron background.
The top half is a side view in the f,-v, plane, and the bottom half is
the top view showing the two dimensionality of the species distributions.
Again, the electrons come from both ion species and are premixed by fast
processes that would be essentially complete before the ifon-ion evolution
begins. A1l three distributions are Maxwellian. The average velocity
of the air is zero, and the relative velocity is the speed the debris

moves through the air. The plasma distribution is spatially homogeneous
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Fig. 5. Typical Plasma Distribution in an Earth Stationary
Reference Frame.
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because it represents the plasma in the small volume in the debris-air
mixing region shown in Fig. 1.

Figure 6 shows the same distribution in the reference frame used in
the computer calculations. This figure has its v, axis reversed from the
previous figure. The average electron velocity and net current are set
equal to zero. The debris plasma frequency is assumed to be greater .
than the air plasma frequency so the fastest growing wave modes are
directed toward the right. This choice.is for convenience only because
the roles of the "debris” and "air" beams can be easily interchanged.
The phase velocity of a typical wave mode propagating at an angle & to
the streaming direction is shown. The magnetic field is uniform and is
in the z direction.

This reference frame is used in the solution of the quasilinear
equations because a known, time independent, zero order solution must
exist for the 1inearfization procedures described in the previous chapter
to be valid. In this frame, the electrons have no drift velocity
relative to the magnetic field so there is no zero order'v X B motion.
Because the fons are unmagnetized as explained earlier, their zero order
drift is purely in the x direction, and no _\TX?mtion exists for them
either. The fon drift velocities are arranged to assure zero order
charge neutrality, to set their difference equal to the desired relative
velocity, and to set the net current equal to zero. The zero current
assures that there is no zero order'j X B motion of the plasma.

An important point to note at this time is that the plasma para-
meters stated in the dissertation are given in this reference frame.
Agafn, this is the frame shown in Fig. 6. Examples of such parameters

are the species streaming (average) velocities and the wave phase

velocities.
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Fig. 6. Typical Plasma Distribution in the Computer Solution
) Reference Frame.
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Calculative Procedure

The basic calculative procedure, which was outlined in Chapter I, is
to trace the evolution in time of the ion distributions as they interact
with a spectrum of growing waves. This evolution is the solution of the
quasilinear equations. The distributions are followed in time until phe
anormalous transport coefficients begin declining indicating the approach
to saturation. The calculation becomes prohibitively expensive when
carried beyond this point. In an evolution, the energy in each unstable

mode in the wave spectrum is followed from its original thermal back-

~ground value to its final value when the calculation terminates. The

calculation proceeds by alternately computing the waves and evolving the
ion distributions. This procedure makes use of the quasilinear assumption
that the wave frequencies and growth rates change relatively sIowa.

The evolution calculation is started by finding the unstable wave
mocdes, 1f any, from the initial Maxwellian species distributions. These
solutions of the linear problem use the analytical forms of the dispersion
relation because the results can be generated more quickly and accurately.
The Tinear problem must be solved many times because the program must
Tocate the wavelength and propagation direction range of the unstable
rodes and then compute those modes which are followed during the evolu-
tfon of the ions.

The ion evolution begins when the wave spectrum is allowed to act
on the fon distributions causing them to change in time. This evolution
is that described by the quasilinear diffusion equation. The evolution
is continued until enough changes in the fon distributions have
accumulated so that the wave frequency and growth rate of each mode in

the spectrum must be recomputed. The growth rate, which changes faster
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than the frequency, is a function of the_ion distribution slopes. Thus,
the program uses the slope of the faster changing, less dense air distri-
bution to determine when to temporarily stop the evolution of the fons in
order to recompute the waves. (The mode update procedure will be
explained in more detail in the description of the computer program.)

Because the recomputation of the waves uses evolved ion distributions
which are no Tonger Maxwellian, a numerical form of the dispersion
relation integrals must be used. The computation of these integrals is
relatively slow so the modes have to be updated as infrequently as
possible. The updated modes have smaller growth rates because the
~general effect of the changes in the ion distributions is to stabilize.
The anomalous transport coefficients are computed just after the modes
are updated because the integrals for these coefficients need the current
values of the frequencies and growth rates.

The calculation continues by alternately evolving the ion distri-
butions and updating the wave modes until it is finished. Each cycle of
wave mode update and ion evolution is an "evolution phase." The
anomalous transport coefficients which are computed after each mode up-
date initially grow in time as the wave energy in the spectrum increases.
When the evolution begins to saturate, the coefficients peak and then
begin to decline because the mode growth rates and the imaginary parts
of the ion plasma dielectrics are decreasing faster than the wave energy
{s increasing. (See Eqns (36) and (37).)

Solution Program

The computer program written to solve the four quasilinear equations
(Eqns (2) to (12)) is based on a set of routines in the GEARB package

from the Lawrence Livermore Laboratory. The GEARB package solves a set
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of simulaneous ordinary differential equations resulting from a finite
differencing of the diffusfon equation, Eqn (10), by the method of lines
(Refs 21, 22, and 23). The coefficients for this set of equations

include the diffusion coefficient, Eqn (12), which is recast in a suitable
numerical form. The other two equations, Eqns (9) and (11), are used to
calculate the wave mode frequencies, growth rates, and spectral energiés
which are needed in the diffusion coefficient integrals.

The computer solution takes place on three separate levels: (1) the
complex frequency plane on which the solutions to the dispersion relation
are found, (2) the k,~k, plane on which the unstable waves are located
and the diffusion coefficient integrals are done, and (3) the V.-V, plane
on which the jon distributions are evolved and the dispersion relation
integrals are done. Actually, there are three separate velocity planes,
one each for the debris, air, and electrons.

Recasting the Quasilinear Equations. The details of the recasting

of the quasilinear equations are in Appendix F. The gerneral recasting
procedure begins with a transformation of the entire velocity plane onto
a square. The spatial variables of the diffusion equation in the trans-
formed coordinates are then finite differenced by the method of Tines.
Also, the numerical forms of the diffusion coefficient integrals and of
the dispersion relatfon integrals are constructed. The dispersion
relation integrals are analytically continued so the dispersion relation
results are valid for damped (w1 <& 0) modes. The analytical continuation
of the diffusion coefficient integrals is not done because the evolutions
are always finished when most of the modes still have positive growth
rates. The programming of the analytical continuation of these integrals

is a very difficult task.
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Computer Program. The quasilinear equations are solved by a set of

computer routines controlled by a master program, IONION. This program
sets up the problem, controls the solution of the 1inear problem,
controls the evolution of the ion distributions in the manner described
earlier, and outputs the results.

Several sets of routines were obtained to perform specific tasks.
The first of these, the GEARB package mentioned above, solves the coupled
ordinary differential equations. The second set of routines, CONTOUR, is
a complex root finder (Ref 24). This set is used to find the complex
frequency solutions of the dispersion relation for the initial plasma
distribution. The next routine, CROOT, is used throughout the evolution
to improve dispersion relation solutions. The fourth set of routines;
SINGRT, SINTRP, and XYZSPLN; does differentiations and integrations. The
fifth set, DISP, is used to numerically generate the values of the
plasma dispersion function and its derivative. The routines CROOT
through DISP are available from the AFHL Math Library. The sixth group
of routines; SAVEIT, BOSS, and SNAP; was obtained from Harry lurphy at
AFWL/DYVM. These are utility routines to write restart files, time
functions, and facilitate debugging. A final set of routines, available
on the AFWL CDC computer system 1ibrary, generates plots.

Most of the routines listed above were modified before incorporation
into the solution program. A more complete explanation of these routines
and of those written for the dissertation is in Appendix G. The appendix
also contains a schematic diagram to show how the solution program is
organized. A complete 1isting is available from the dissertation author
at AFWL/DYCE, Kirtland AFB, New Mexico 87117, Most of the routines are

written in Fortran. The total program lTength is about 25,000 decimal
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words.
An interesting feature of the solution program is that it is also
set up to evolve the ions and electrons for magnetic-field-free,

electron-ion instabilities. This feature has never been tested, however.
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1V. The Computational Results

In this chapter, the results from the computer runs are described.
In the first few sections that follow, the tests of the linear solution
and the test of the full evolution are discussed. Several test cases
were done and were compared with analytical solutions to insure the
program was working properly. Only the major tests of the program as a
whole are described. Each subroutine was also tested before it was
incorporated 1nto the main program. Next in this chapter, a few of the
results of debris-air coupling problem simulations at 200 km and 600 km
are presented. Only a few highlights are given to avoid inundating the
reader with data. A general discussion of these latter results is in
Chapter V.,

Tests of the Linear Dispersion Relation Solution

The computer results for the linear problem (the dispersion relation
solutions for the initial Maxwellfan distributions) were tested using
three different types df plasmas for which analytical solutions are
relatively easy to obtain. The analytical and computer 1inear solutions
for each of these types are compared in the next three sections.

Equal and Opposite Cold lon Beams. The first test case is for

equally cold, equally dense debris and air distributions. The term
"cold" means the thermal widths of the ion distributions are much less
than the relative velocity between the beams. The ion atomic weights

are also assumed to be the same so in the computer reference frame the
jon beams have equal and opposite velocities. The unmagnetized electrons
are assumed to be hot so unstable wave modes can exist. The relative
velocity 1s chosen to be less than the fon acoustic velocity so the

problem 1s essentially one dimensionaI; Because the problem is one
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dimensional, unstable wave modes which propagate in the streaming direc-
tion can exist. The analytical solution, therefore, 1s done in one
dimensfon and 1s compared with the computer generated modes where kx = k
and kz = 0.

The fons are cold so the wave phase velocities are well away from

the bulk of their distributions:

wA -
o i Vd\, S>> ¢y « =D, A (91)
Also, because the electrons are hot,

]—ai"— e Eg (92)
Therefore, the problem s hydrodynamic, and the dispersion relation in
Eqn (51) applies. In hydrodynamic problems, the effect of the distribu-
tion shapes can be ignored. This case is very similar to the equal and
opposite electron beam problem frequently found in texts. (For example,
see Ref 19: 222-227.)

Equation (51) after Eqns (91) and (92) are used becomes

Coga
| ¢ =il =w;,;[ ' + : z] (93)

A, (ot AV T (=AW
where Copi = @pp = cpp (94)
v ==V, =V, (95)
Ay =‘/?;C,( =1, %=§=3 (6

Note the value for Ye from Ref 25: 189 1is the value traditionally used.
Equation (23) also results vhen a power series expansion procedure 1is
applied directly to the non hydrodynamic dispersion relation, Eqns (19)
and (32) (Ref 19: 381-392).

The solution of Eqn (93) 1s (Ref 26: 129-131)
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where «Aog = "2%‘ (98)
Da

Unstable wave modes exist when imaginary solutions for the « in Eqn (97)
exist. Hence for instability, the minus sign must be used, and the vave
k must be in the following range:

| l
o ¢« A< 1w'f;(-\-7,:—-j;—z> (99)

at

where Ve is given by Eqn (56). Because k is real,
must
vV & A, (100)
for instability. Equation (100) is the usual one-dimensional instability
criterion. The solution of Eqn (97) for a wave k which satisfies Egn
(99) is the imaginary part of the complex frequency for the growing mode
at that k. The real part is always zero.

The test calculations are done using the plasma shown in Table H-I
in Appendix H. Tabulated in this appendix are all of the types of
plasmas used for the dissertation calculations. The beam densities are
not made exactly equal because that would cause the unstable roots to
1ie on the imaginary axis of the complex frequency plane. The plasma
dispersion function varies many orders of magnitude across that axis so
the program gives bad results due to numerical errors. The values of
the fon densities are chosen to approximate those found at 200 km above
the earth if the air there were completely singly ionized (Ref 27).

For the distribution in Table H-I, the unstable wave k range from
Eqn (99) is
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0 ¢ A< 12 em (101)

and the complex frequency solution of Eqn (97) for k = 6.0 cm'1 is

o = 0.0 + 4 3.0(107) Sec (102)
The computer solutions agree well with the results in Eqns (101) and
(102). The unstable wave k range is from 2 em ! to 9 cm'l, and the

1 1

complex frequency for k = 6 cm = is w = 8.6(105) + 13.0(107) sec . The

small real part in the wave frequency is due to the slight density
fnequality. Unstable modes are not found for wave k's less than 2 cm'1
due to the following thermal effect: The phase velocity of each unstable
mode must match the velocity of the distribution resonant region shown

in Fig. 3. Yet, the oscillation frequency must remain near the character-
istic one which, in this case, is determined by the ion plasma
frequencies. From the definition of the phase velocity in Eqn (18), a
small wave k implies too small of oscillation frequency so the plasma
waves cannot resonate. This effect is absent in the cold plasma hydro-
dynamic equations because the distributions are assumed to be infinitely
narrow.

An interesting note is that the computer solutions found numerous
unstable wave modes which propagate at large angles to the streaming
direction. Unstable modes existed at angles from zero degrees to 75
degrees. This result is not predicted by one-dimensional theory.

Bump-on-the-Tail Distribution. The next test case is the bump-on-

the-tail distribution which is a weak, cold air beam passing through a
warm debris plasma. Like the equal beam distribution, this one also has
a commonly done electron analogy (Ref 19: 458-463). Again, the atomic

wefghts of the air and the debris are assumed to be the same. The debris
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beam is assumed to be warm and much denser than the air beam. The air
beam is assured to be cool and to have a mean velocity much greater than
the thermal velocity of the debris. Again, the electrons are assumed to
be hot and unmagnetized. A side view, velocity space plot of the sum of
the debris and air distributions in the computer reference frame is

shown in Fig. 7. The initial sum (the solid 1ine in the figure) is thgt

fo(t=0)

_/'—-(
NONRESONANT-f’;r— POSITIVE SLOPE

BULK PLASMA RESONANT REGION

Fig. 7. Bump-on-the-Tail Distribution Before and After Evolution.
used here for the linear solutions. From the figure, the reason for the
name of this distribution is obvious because the air beam forms a small
bump on the tail of the debris distribution. In this reference frame,
the debris 1s almost stationary so the air velocity is the same as the
relative velocity. This velocity is again chosen to be small enough so
one-dimensional analytical theory is applicable.

The analytical solution of the dispersion relation for the real

part of the frequency by the power series method mentioned in the

previous section is

48
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E k3
1 w 3(:,‘ " Cufzﬁ I
{ A?. 1. wi w’;l ("% _%)1 (103) :

The corresponding solution for the 1mag1nany part is
3 “"e‘t @ : ‘Ucﬂ ) ! A )
A%} I J—l“ 2T < u:z PR v

“’A.

minddadulaad A5

Wpa “n

“’4':—'1@ % +A1 L é f:/j;jtt(& 2 2 / 104)
o 2 (' ll % Co‘q + 4£:z§3 n 3
wa \ W, (’zjf ~Vy)

R In Eqns (103) and (104), the wave phase velocity has been assumed to be
much greater than the debris thermal speed. Equation (103) is solved by

E iteration, and the result is inserted into Eqn (104).

The test calculations are done using the plasma distribution shown

in Table H-I1. Again, the air density is characteristic of that found

]
}
i at 200 km. The analytical solution is found for k = 1 cm’l. For this

vave k, only stable modes exist. The analytical and computer solutions

Can e e e

for one such mode are ' |
; w = §7(107) = < 7.5 (10°) sec™! (analytical) (105) '

w = 56(107) — 4 £.9(10°) sec™  (numerical) (106)

The agreement is good with the discrepancy being due to the warmth of the
air beam in the computer calculation. The computer solution gives un-

stable modes for wave k's from 0.075 cm'1 to 0.75 cm"1 with the fastest

it e L a e i e

growing mode at C.5 cm’l. The phase velocities of the growing modes are
in the positive slope resonant region shown in Fig. 7. Note the real
J part of the frequency is just below the fon (debris) plasma frequency.

Equal Beam with Magnetized Electrons. The final Tinear test case

) is similar to the first except the electrons are cold and magnetized.

The analytical solution uses the cold hydrodynamic result, Eqn (°3),
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modified to account for the electron magnetization. Because the ions
are unmagnetized, the only change is to the electron dielectric. There-

fore, when Eqns (53) and (76) are compared, Equation (93) becomes

.
Lpe  _ K PR S =5 Bou's 107
[+ a? “p~ [(w+,4v)‘ ) (w—JzV)"] =

The electron dielectric also results directly from Eqn (20) when Eqns
(22), (26), (27), and (29) are used. Equation (107) can be rewritten
using the definition of the lower hybrid frequency, Eqn (69):

2 { I
- I e —_— 108
l wLH [(C\)'PAV),' + (w —AV)‘] ( )
The solution of Eqn .(108) follows that of Eqn (93):
/.
Y 2 2 -
whe AV Wl el v sl AV (109)

Analogous to Eqn (99), the unstable wave k range is

2
o 2 e =L (110)
\4
The test plasma is shown in Table H-III. For this case, the
unstable k range is
0 ¢ 4 € e em! (111)
and the complex frequencv from Eqn (109) for k = 4.8 cm'1 is
e = 0.0+ 220107 sec”! (112)
The computer solutions corresponding to Eqns (111) and (112) are
235 < 4 ¢ 67 em! (113)
w = 68C155) ta 2.2(107) sec”! (114)

The agreement, again, is quite good with the discrepancy in the lower

end of the wave k range being due to the resonant effect described

ear11er;
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The computer solutions for this test case have two very interesting
features. First, the unstable modes are all found in the extremely small
angular range: 0% e<s degrees. The cold electrons freely move along i
the magnetic field stabilizing the waves with even small components of
motion parallel to the field. And second, the wave oscillation frequen-
cfes quickly increase as the propagation direction moves away from befng
exactly perpendicular to the field. As & increases, the wave type changes
from an fon-ion wave to a modified two-stream wave. The relationship
between the fon-ion and modified two-stream wave types is described later
in this chapter.

Test of the Evolution

The test of the computer evolution of the ion distributions is done

for the bump-on-the-tail plasma distribution described earlier. Only an

unmagnetized test case needs to be done because the fon diffusion

equations are unchanged when the electrons become magnetized. In fact,

the only place the effect of electron magnetization appears in the
quasilinear equations is in the electron dielectric term of the disper-
sion relation. (The magnetized dispersion relation was tested in the
previous section.) In the test evolution, the relative velocity is
chosen to be far enough below the debris acoustic velocity so the fastest
growing wave modes are in the streaming direction. Thus, the computer
evolution should be approximately one dimensional.

A one-dimensfonal analytical solution of the quasilinear equations
follows Davidson (Ref 14: 174-182) and is in Appendix I. This solution
gives the time asymptotic behavior of the fon distributions after quasi-
11near saturation has occurred. A plot showing qualitatively the nature

of the asymptotic solution 1s included in Fig. 7; The figure shows the |
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formation of a plateau in the resonant region and a slight heating of
the debris ions. No further changes in fhe distributions from the
configuration shown is possible according to quasilinear theory.

The test evolution is done using the distribution in Table H-1V.

Unstable wave modes exist for
-

L1 £ A, £ 37 em (115)

with the fastest growing mode:
to = 10(10") + 4 6.3 (108) sec (116)
at A, = 22 em (117)
le : 0.0 cm ! (118)

A complete 1isting of all of the wave modes used in t*  test evolution
is in Table J-I in Appendix J. Tabulated in this appendix are all of
the wave modes used to begin each of the dissertation evoiution calcula-
tions. These modes are derived from solutions of the 1inear dispersion
relation using the initial plasma distributions..

The possible appearances of new unstable wave modes late in the
evolution calculations are ignored in this and all other evolutions in
the dissertation. The initial modes must accumulate spectral energies
several orders of magnitude above the initial thermal values before the
distributions begin to change. This Targe head start insures the in-
significance of any late appearing modes in modifying the plasma. Even
among the initially growing modes, the fastest growing mode quickly
dominates by accumulating a spectral energy much Targer than all of the
rest.

As can be seen from Table J-I, all of the growing modes propagate
within 40 degrees of the streaming direction (the x direction) so the

computer quasilinear solution starting with these modes is essentially

52
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one dimensional. The phase velocities over cos® of these modes lie 1in

the range:

2.5(10”) < L8 £ 2.8 (107) em/sSec (119)
cea &

which corresponds to the positive slope of the combined distribution
shown in Fig. 7. This range is in the resonant region which changes the
most rapidly during the quasilinear evolution.

The evolution results are shown in Figs. 8 and 9. In these figures
and in all such figures; the debris distribution, the afr distribution,
and their sum are plotted in a three-dimensional perspective view. The
electrons are not plotted as they always remain in their initial Max-
vellian distribution. The plane is the positive u, half of the square
which represents the positive g, half of the velocity plane as is
described in Appendix F. (The plane in the figure is the computer
velocity mesh.) The point of view is above the positive Vs axis looking
downward and in the negative v; direction. The front and back edges of

the plane represent V) = o and v, = 0 respectively. The left and right

z
edges represent v, = o0 and v, = -e0 respectively. The heights of the

X X
distributions are normalized to the original Maxwellian heights. This
normalization is held constant throughout an evolution so a change in
apparent height is real. Eecause in this type of plot appearance of the
initial individual debri§ and air Maxwellians is the same for any type
of plasma, the initial ion distribution plots corresponding to Fig. 8a
and 8b are omitted for the remainder of the dissertation. The computer
program constructs these three types of plots and 1ists the distribution

values over the velocity mesh at the end of each phase of the evolution.

These plots and listings, which are available from the author, are used
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to check on the general progress of the evolutions. Because the plots
are intended to show the qualitative ch&nges to the ion distributions
during the evolutions, the numerical values of the plotted points are not
important, and hence, are omitted.

In Figs. 8 and 9, the initial distributions and the final distribu-
tions calculated are respectively shown. The final distributions are’
those at normalized time = 120 where the normalized time is in units of
the debris plasma oscillation time, .

i o (120)
norm P
(This time normalization is used frequently throughout the remainder of
the dissertation.) At that time, the wave modes were rapidly changing
from growing modes into damped modes, and the anomalous transport

coefficients were declining. Therefore, Figure 9 shows the distributions

close to saturation.

The computer evolution results shown in Fig. 9 agree well both with
the analytical solution results shown in Fig. 7 and with the assumptions
used in the dissertation calculations. A plateau does form in the reso-
nant region. The temperature of the debris increases 0.4 percent which

approximately agrees with the result, 0.2 percent, from Eqns (I-32) and

(I-34). This change in the nonresonant particle energy is of the order
of the wave energy as predicted by Eqn (I-36). (The discrepancy is
mostly due to the large amount of heating in the tail of the debris
distribution. The tail is in the resonant region, but the computer 5
temperature calculation includes the tail with the nonresonant particles.
In fact, the change in the resonant particle energy is not computed
because it involves velocity moments of parts of the debris and air

distributions.) é
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| The evolution is complete in about 1075 seconds after the ion teams
have moved 40 cm relative to each other. This distance (the coupling '

’ length) {s much smaller than a typical debris bubble mixing region sfze
} of a few kilometers so the homogeneous approximation is a good one. The

1 seconds needed for collisfions

evolution time s much less than the 10°
to alter the distributions significantly (Ref 28: 133), yet it is greater
| than the time from Eqn (A-31) needed for the neglected free streaming
terms to damp away.
The total wave energy throughout the entire evolution is less than
the debris and air thermal energies so Eqn (45) holds. (Incidentally,
most of the total particle energy is in the electrons.) Therefore, the

assumption that the electric fields are first order quantities so the

higher order mode coupling terms in Eqn (A-17) can be ignored is

reasonable. The wave energy normalized to the initial total ion energy

is plotted versus time in Fig. 10. As can be seen from the figure, |

e

most of the evolution consists of an approximately linear phase where

the wave energy grows exponentially. Late in the evolution, the cal-

|

' culation becomes nonlinear as the changing distributions slow the wave

I energy growth rate. This behavior is typical of the general nature of

‘ all of the evolutions where nothing much happens foé most of the time, !
and then suddenly, a lot begins to happen very quickly.

- Because late in the evolution the total wave energy approaches the

air thermal energy, the possibility of particle trapping should be in-

vestigated. Particle trapping occurs when an fon is trapped by a single

FET DS R SR

vave and is carried along with it. Trapping is a highly nonlinear process

so the quasilinear equations break down when it occurs. The time needed

for a singly fonized afr ion to be trapped is (Ref 14: 54-56)
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where W is the average electric field eneréy density in the few

viave

fastest growing wave modes.
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(Most of the total wave energy is in these
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modes.) The field energy is taken at its maximum value (the worst case).
The time in Eqn (122) is about the same as the evolution completion time
so particle trapping cannot begin to occur until the evolution is essen-

tially complete.
7 momentum This

The maximum momentum transport coefficient is 0.1 volesee
coefficient corresponds to the effective anomalous collision frequenc&:
v, = = o (123)

My MA(VA—VD)

2~ 2(10%) sec”! (124)

where the numerator is obtained from Eqn (36) and the computer results.
This collision frequency is about 0.2 percent of the debris plasma fre-
quency. (Note throughout the remainder of this chapter, the anomalous
transport coefficient results will always be quoted in terms of an
effective momentum transfer coljision frequency for air normalized to

the debris plasma frequency.) The collision time, which is the recipro-
cal of Eqn (124), is much less than the collisional relaxation time
mentioned above. Therefore, the instability modifies the plasma much
faster than binary collisions in agreement with the collisionless assump-
tion of Viasov theory.

The temporal behavior of the normalized anomalous collision fre-
quency shown in Fig. 11. The exponential growth early in the evolution
is clear as well as the fall off late in the evolution as the distri-
butions begin to saturate. The fall off is due to the rapid decline of
toth the mode growth rates and imaginary parts of their ion dielectrics.
The average air velocity normalized to the debris acoustic speed is also

shown in the figure. The decrease in the air velocity is the main energy
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for the Bump-on-the-Tail Test Evolution.

linear phase followed by the nonlinear phase is evident. The growth rate
falls because the changes in the distributions tend toward stabilization.
The decrease in the real part reflects the decrease in the resonant
region velocity as the air heats and slows down. The real part of the

frequency decreases to maintain the resonance given by Eqn (18). The

small oscillation in this curve is caused by a small inflection in the

air distribution slope passing the velocity resonant with this mode.
The sudden change in the slope of the curve for the imaginary part

near time = 110 in Fig. 12 is due to the calculation beginning to break

down. The wave modes very late in the evolution were not updated often
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enough. The development of a method of getermin{ng the frequency of
mode update during an evolution is not a trivial task. Several itera-
tions were required to get a suitable method. The method must update
infrequently early in the evolution when the energies in the wave modes
are small and update frequently late in the evolution when the distribu-
tions are changing rapidly. The distributions in a calculation which _
breaks down develop oscillations essentially between plus and minus
infinity within a few hundreths of an e-folding time. The update control
used in the trial evolution was an earlier attempt at the control algo-
rithm. Fortunately, a small degree of breakdown has Tittle effect in
the maximum anomalous transport coefficients.

In conclusion, the computer evolution appears physically sound and
agrees with an analytical solution. The results also seem to be rela-
tively accurate and consistent. The anoralous momentum transfer
coefficients for the debris and air should be equal and opposite. They
are to two significant figures. The electron transport coefficients are
much smaller than those for the ions so the adiabatic electron assump-
tion is a good one. The numerical version of the dispersion relation
applied to the initial Maxwellian distributions gives results which
agree with the analytical dispersion relation results. The oscillation
frequencies are the same to two or three places, and the growth rates
usually agree to about one or two places. Occasionally, however,
discrepancies of up to a factor of two appear in the growth rates.
Particle, momentum, and energy densities checked by CONSERY are conser-
ved to within one percent. The fast integration routine for the diffu-
sfon coefficients, COEFINT, is not very accurate compared to SINGRT.

Yet, the net diffusion is the same with the maximum anomalous transport

e _ihemi sodoc
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coefficients from an evolution using each routine agreeing to two places.

Evidently, because so many diffusion coefficient integrals are done, the
fnaccurate COEFINT results average out to those of SINGRT. In general,
the computer evolution results seem to be accurate to at least within a
factor of two. .

Debris-Afr Evolution Results

The debris-air evolutions are divided into two categories according
to vhether or not the electrons are magnetized. The reasons for these
two categories and the criteria for placing a given debris-air problem
into one of them are covered in Chapters I and II. The evolutions using
afr densities typical of altitudes of 200 km fall into the unmagnetized
category because the resulting electron distribution can be expected to
overpovwer any magnetic fields which are present. For air densities
typical of 600 km, the reverse holds so such evolutions fall into the
magnetized category. Also, at 600 km the electrostatic criterion, Egn
(78), holds quite well for reasonable magnetic field strengths. The
evolution results from sample problems in each of these categories are
described below.

Unmagnetized Evolution Results. The first sample unmagnetized

debris-air problem is the same bump-on-the-tail distribution used above
except with a relative velocity greater than the ion acoustic speed.

The species distributions and relevant parameters are shown in Table
H-V. This distribution is chosen so that two-dimensional effects are
emphasized and so the results can be compared to and contrasted with the
largely one-dimensional test case. The neglect of the magnetic field is
a good assumption because a reasonable 25-gauss field and a typical

electron temperature of 3(10%) eV give an electron /?e of 2(10%). The
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Tinear solutions for the unstable modes are shown in Table J-11.
The results of this evolution are shown in Figs. 13 and 14. The
distributions shown are respectively the initial one for the ions and

those at the time of the maximum momentum transfer rate. The fastest

_groving mode inftially propagates at a 73-degree angle. The heating of

the air at approximately that angle to the negative Vy direction is

apparent in Fig. 14, The plateau shown in Eig. 7 does not fbrm. Khen
the evolution is finished, the angle of maximum growth decreases to 69
degrees but the large accumulated wave energy in the initially fastest

growing mode still cdominates the evolution.

momentum
vol-sec

which is less than half of that for the one-dimensional evolution even

The maximum value of the momentum transfer rate is 0.078

though the initial wave growth rates are nearly the same. The momentum
transfer rate in terms of the normalized collision frequency is plotted
in Fig. 15. The normalized average air velocity is also shown. The
dotted 1ine extension to the collision frequency curve is the result from
an earlier attempt at the evolution which began to break down just before
the peak was reached. This result clearly shows the relative insensi-
tivity of the collision frequency on the exact details of an evolution.
This breakdown is also shown in the next figure, Fig. 16. This figure
also reveals that the real part of the wave mode frequency increases
with time. This is true for most of the evolutions, but the reason for
this is not clear. Of course, the imaginary part always decreases with
time.

Because the unstable waves for this distribution (where VR/vDac =
2.6) propagate nearly perpendicular to the streaming direction, the dis-

trib tion temperature in the v, direction increases dramatically. The
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for the Large Pelative Velocity Bump-on-the-Tail
Evolution.
debris and air v, temperatures by the time the maximum momentum transfer
rate is reached respectively increase 0.35 percent and 110 percent. The
Vg temperatures actually decrease 0.02 percent and 11 percent respec-
tively These results contrast with the strong Vy heating in the one-

dinensional (VR/v = 0.78) evolution. The corresponding values to

Cac
those above for the V4 temperature increases are 0.01 percent and -5.1
percent, and those for v, are 0.35 percent and 91 percent. The one-
dimensional anomalous heating rates are somewhat less than those for the

two-dimensional evolution. These observations indicate that at the
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higher relative velocities more of the wave energy heats the distribu-
tions at large angles to the streaming direction but less momentum
transfer occurs. The importance of the use of two dimensionality in the
evolutions is apparent.

The coupling length for the two-dimensional evolution is 130 cm
which is still much smaller than the debris-air mixing region. The ratio
of the total wave energy at the time of the peak momentum transfer rate
to the initial thermal wave energy is 6.3(103). The evolution took 50
min of computer time while the one-dimensional evolutior took 2 1/4 hrs.

The difference is mostly due to the relatively large number of wave

modes followed in the one-dimensional case.
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The next two evolutions are the 2C0-km simulations which are done
for Tow and high relative velocities. The low velocity distribution
parameters are shown in Table H-VI; and those for the high velocity run
are in Table H-VII. The corresponding linear solutions are in Tables
J-111 and J-1V. Before these distributions were evolved, the possible
existence of the fon acoustic instability between the electrons and
either of the ion beams vas examined (Ref 19: 476-478). The ion acoustic
modes do not exist, however, because the warm temperatures of the ion
beams shut off the instability. (The fon acoustic instability will
occur only if the fons are cold and have a large velocity relative to
the electrons so the fon Landau damping does not overwhelm the weak
Landau growth from the electrons.)

The results of these evolutions are shown in Figs. 17 through 20.
Again, the figures show the initial combined ion distributions only and
the debris, air, and combined ion distributions at the time of the
maximum momentum transfer rate. The results in the figures again show
the one dimensionality of the low rejative velocity (VR/vDac = 1.2)
evolution and the two dimensionality of the high velocity (\'R/vDac = 3.8)
evolution. The low velocity results in Fig. 18 show predominately one-
dimensional heating. This occurs because the initially fastest growing
mode prcpagates at zero degrees. Both the debris and air ions experience
resonant heating with the flattened areas of their distributions cor-
responding to the phase velocities of the growing modes. The one-
dimensional heating is reflected in the changes in the debris and air
temperatures. The changes in the v direction are 8.6 percent and 18
percent, and the changes in the v, direction are -0.45 percent and -2.7

percent. The relative velocity decreases 1.5 percent providing the
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energy to drive the instability. The high velocity results in Fig. 20
show heating at large angles to the streaming direction because the
fastest growing modes propagate approximately between 55 and 70 degrees.
The flattened area on the air distribution corresponds to one of the
resonant regions shown in Fig. 4. No resonant Leating of the debris
occurs. The changes in the debris and air temperatures in the v

X
direction are 1.3 percent and 3.5 percent, and the changes in the Vs,
direction are 5.3 percent and 12 percent. The relative velocity
decreases 0.39 percent.

The normalized anomalous collision frequencies for both of the 200-
km simulations are graphed in Fig. 21. The maximum anomalous collision ;
frequency for the low velocity simulation is roughly an order of mag-

nitude higher than that for the high velocity run. The maximum for the

Tow velocity also occurs in abtout one half of the time of the other.

i ‘ This result is also reflected in the Targer difference in coupling

! lengths than can be accounted for by the difference in relative veloci-
ties. The lengths for the low and high velocity runs are 31 and 160 cm.
The anomalous energy transport rates for the high velocity run are about f
a factor of two higher than the low velocity results.

! The imaginary parts of the initially fastest growing modes in the

two simulations are shown in Fig. 22. Even though the low velocity run

ends in half the time and has an order of magnitude larger anomalous

collisfon frequency, its initial growth rate is only a third larger.
The ratios of the total wave energies at the end of the two simulations

to those at their beginnings areA1.6(164) and 3;2(104) respectively for

{

1

1

3

i the low and high velocity runs; ‘The respective computer running times i
were 2.4 and 1;3 hrs.
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Fagnetized Evolution Results. The magnetized cases simulating the

600-km problem are somewhat more complicated to evolve for several ﬁ

reasons. First, the modified two-stream instability often competes with

] the fon-fon instabi1ity (Refs 3: 53-56 and 29). Fortunately; only the
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jon-ion instability operates for the high electron temperatures used in 1
the simulations. HNext, the electrostatic criterion also has to be

satisfied. This requires some juggling of the relative velocities, the
magnetic field strength, and the fon densities (the simulation altitude)

to insure that the criterion is rigorously satisfied for the evolutions

| used in the dissertation;' Finally, the magnetized evolutions use more
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computer time because the dispersion relation is more complicated and the
evolutions take longer to reach the peak momentum transfer rate.

The mixture of modified two-stream and fon-ion modes which appears
when the electron temperature is reduced is shown in Table J-V. This
table ‘shows the linear solutions for the distribution shown in Table
H-VIII except the electron temperature in the ¥ direction is an order
of magnitude lower than the tabulated value. The type of mode is deter-
mined by the relative magnitudes of the imaginary parts of the dielec-

1 1

trics. For example, the mode at kx = 0.1064 cm~ is

and k, = 0.0 cm”
ion-ion because the imaginary part of the electron dielectric is much
less than those of the fon dielectrics. Conversely, the mode at kx =
0.1064 cm™ Y and k, = 3.125(10'4) cn ! s a modified two-stream mode
between the air and the electrons. Note also, the extremely small angu-
lar range of the unstable modes.

The distributions evolved are in Tables H-VIII and H-IX respectively
for Tow and high relative velocities. The corresponding 1inear solutions
are in Tables J-VI and J-VII. A1l of the wave modes shown are clearly
ion-fon. Before the distributions were evolved, the possible existence
of modified two-stream modes propagating to the "left" (See Fig. 6) was
also checked. No such modes were found so all of the unstable modes for
the distribution are fon-ion, and therefore, the electrons are adiabatic.

The evolution results are shown in Figs. 23 through 26. The low
relative velocity (VR/VDalf = 0.042) evolution results are very similar
to those of the low velocity evolution for 200 km. The heating is one
¢imensional, and the phase velocities of the unstable modes and the
resonant areas of the distributions are the same as those in the 200-km

Tow velocity case. The changes in the debris and air temperatures in
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the ¥ direction are 20 percent and 35 percent, and the changes in the
v, direction are -1.8 percent and -5.5 percent. These changes are much
larger than the 200-km results. The relative velocity decreases 3.3
percent.

The high velocity results are quite different from the corresponding

200-km case. The relative velocity used is between the debris Alfven

and acoustic speeds (VR/VDaIf = 0,15 and VR/v = 4,5) so one-dimen-

Dac
sional magnetized modes and two-dimensional unmagnetized modes both exist.
This division is shown in Table J-VII, the 1inear solutions. The mag-
netized modes propagate in the streaming direction, and the unmagnetized
modes propagate in an angular range near 60 degrees. The unmagnetized
modes are very similar to the wave modes for the high velocity, 200-km
case. Because the magnetized modes have the larger growth rates, the
heating is predominately in the Vy direction as shown in Fig. 26. The
changes in the debris and air temperatures in the v direction are 110
percent and 190 percent, and the changes in the v, direction are -18
percent and -36 percent. The heating of the distributions is fairly
uniform with 1ittle resonant heating being observed. The relative
velocity decreases 2.7 percent.

The normalized anomalous collision frequencies for these simulations

are shown in Fig. 27. The peak collision frequency for the high velocity
run is about four times as large as.that for the low velocity run. The
next figure, Fig. 28, shows the growth rates of the initially fastest
growing modes. The initial growth rate for the high velocity distribu-
tion is twice that of the other. The ratios of the total wave energies 3

at the end of the simulations to those at their beginnings are 5.7(105)

and 4.0(107).
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Fig. 27. Anomalous Collision Frequencies for the 600-km
Simulations.

The coupling lengths for the low and high velocity runs are 880 and
i 1900 cm. These lengths are much larger than an fon gyro radius so the
assumption that the ions are field free breaks down. In the debris-air
coupling problem, this breakdown means that a mechanism based on curving
fon paths causing the coupling (Ref 30) {s more 1ikely.
The computer running times for these evolutions were 2.7 and 3.8

hrs. The Tong times were partly due to the use of an earlier fnefficient
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Fig. 28. Temporal Behavior of the Initially Fastest Growing
Modes for the 600-km Simulations.

control on the mode updates.

The above discussion on the 600-km simulation results completes the
presentation of the dissertation evolution calculations. In the first
few sections of this chapter, the testing of the computer program written
to do the evolutions was described. Included in that description was an
evaluation as to how well the computer results satisfy the assumptions
of quasilinear theory. In the remaining sections of the chapter, the

results of the simulation calculations were presented. These results

are summarized and evaluated in the next chapter.
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V. Discussion and Recommendations

First in this chapter, the results of the evolutions done for the
dissertation are summarized. Next, the results are checked for consis-
tency both with the assumptions made in Chapter I and with the assump-
tions of quasilinear theory. And finally in the chapter, some recom-
mendations for further study are made.

Summary of Evolution Results

Several general features of the evolutions are apparent. First,
the nature of the evolutions changes dramatically as time progresses.

At early times, nothing much happens because the wave energies are still
small. At late times, the fon distributions begin to change rapidly, and
the growing wave modes rapidly begin to drop out becoming damped modes.
The bulk of the computer time is spent in the latter phases of the evolu-
tions.

The next general feature of the evolutions is that the maximum
anomalous transport rates occur before saturation. Although these rates
are proportional to the wave energy, they also depend on the distribution
slopes through the wave growth rates and plasma dielectrics. (See Eqns
(36) and (37).) These slopes decrease rapidly late in the evolution
calculations causing the transport rates to peak and then decline.

The evolutions verify the characteristic frequencies and velocities
derived in Chapter I1I. The unmagnetized waves do tend to oscillate near
the ion plasma frequency. This tendency is apparent when one compares
the initial wave oscillation frequencies for the bump-on-the-tail cases
in Tables J-1 and J-II with the debris plasma frequency in Table R-IV.
This tendency is less'apparent when the ion beams are of comparable

densities because the interactions of the debris-electron oscillations
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with the air-electron oscillations reduce the resulting wave frequencies.
In fact, when the ion beams are equal and opposite (uapD = uopA), the
wave frequencies go to zero. Similarly, the magetized waves do tend to
oscillate at the lower hybrid frequency. Note these results confirm

the reasonableness of the time normalization in Eqn (120). The charac-
teristic velocity for the unmagnetized waves is the ion acoustic speed
because the wave phase velocities do tend to be near this speed. The
actual phase velocities are somewhat less than the ion acoustic speed,
however, due to the wave interaction effect described above. (Also, see
Eqn (18).) Because the waves cannot move faster than the fon acoustic
speed, the unstable wave modes for plasma distributions with high
relative velocities must propagate at large angles to the streaming
direction. Their phase planes can then keep up with the resonant areas
as shown in Fig. 4. The characteristic velocity for the magnetized waves
seems to be the Alfvén speed. This is most apparent in the high
velocity, 600-km evolution. In that evolution, the initial magnetized
waves propagate faster than the ion acoustic speed, but they still are
in the streaming diéect1on because the relative velocity is less than
the A1fvén speed. In general, the relationship between the character-
istic velocity and relative velocity of a given plasma type determines
whether the evolutions will be one dimensional or two dimensional.

The next feature of the evolutions is that they are definitely ion-
ion. The transfer of momentum and energy from the fons to the electrons
is negligible compared to the transfers between the two ion species.

Another feature is that the peak transport rates are attained in
about ten e-folding times where an e-folding time is the reciprocal of

the largest initial wave growth rate. This result is quite different
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from the usual "back-of-the-envelope" time to quasilinear saturation of
one e-folding time. This time to attain the peak transport rates also
corresponds to the time when the wave energy begins to become comparable
to the fon thermal energy.

The evolutions are characterized by strong diffusion in the
regions of the distributions resonant with the waves and by weak dif-
fusion in the nonresonant regions. The flattened areas on the distribu-
tions in the figures in the previous chapter are the result of the strong
diffusfon. The weak diffusion cannot be seen in the figures, but it is
apparent in the numerical printouts of the distributions. In general,
the effect of the nonresonant diffusion is a slight heating of the fon
distributions similar to that shown in Fig. 7.

The evolutions appear to be numerically statle. Cccasionally, a
small dip at a single mesh point in an ion distribution suddenly
appeared during an evolution calculation probably due to an error in the
GEARB solution. This dip quickly filled in during the next few phases
of the evolution thereby proving the inherent stability of the solution.
Yet, 1f the wave modes were not updated often enough, an evolution would
quickly become unstable with rapidly growing oscillations in the particle
distributions. Clearly, the most important factor on numerical stability
js the frequency of mode update.

The final general feature of the dissertation results is that more
momentum transfer and less particle heating occurs in the low relative
velocity evolutions than in the high velocity ones. This phenomenon {is
reasonable because the predominately z direction diffusion in the high
velocity runs is symretric as shown in Fig. 4. A momentum tfénsfer in

the positive z direction in the upper resonant region is canceled out
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by a momentum transfer in the negative z direction in the lower region.

—

The net effect, therefore, is a spreading of the distribution which
increases the z temperature. The low velocity diffusion, on the other

hand, is predominately in the x direction as shown in Fig. 3. This

o

diffusion is not symmetric so a net transfer of momentum does occur. The
phenomenon can be seen in Table I which is a summary of the dissertation
evolution results. The tabular entries are in a suitable form for
insertion into a CGS set of hycrodynamic equations. The implication of

B these results for the exospheric nuclear explosion coupling problem is
that the icn-ion jnstability is not effective in coupling the air to the
debris when their relative velocity is high.

Validity of Approximations

The assumptions used in the dissertation quasilinear calculations
hold fairly well in most cases. The electric field energy in the unstable
waves does remain smaller than the particle thermal energy in accordance
with the weak turbulence criterion, Eqn (45). The wave electric fields,
therefore, are of first order, and the perturbation approach used to
derive the quasilinear equations is valid. The electrostatic approxima-
tion criterion, Eqn (78), holds for the magnetized distributions used.
(The criterion is not pertinent for the unmagnetized cases because
coupling between the electrostatic waves and possible electromagnetic
waves does not occur.) The wave oscillation frequencies for the
magnetized cases do fall in the range defined by Eqn (29). The average
electron gyro radii are small so Equation (31) is satisfied. The fon

radii, however, are large compared to the mode wavelength as required

in part of Eqn (30), but they are small compared to the coupling length
violating the other part of that equation. This violation means the
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magnetized fon-ion instability does not reach saturation before the
plasma is altered by the fon gyro motions around the magnetic field
lines. The coupling lengths and unstable mode wavelengths are always
less than a few meters so the homogeneous approximation is a good one.
(Recall the mixing region thickness is of the order of a few kilometers.)
The anomalous collisfon frequencies are always much larger than the -
binary collision frequencies so the Vlasov approach is valid. The phase
mixing times for the free-streaming terms are always much less than the
evolution times (the times to reach the maximum transport rates) so the
free-streaming terms can be neglected. The trapping times are of the
order ¢f the evolution times, however.

In general, the unmagnetized quasilinear evolutions done for the
dissertation seem to be valid up to about the time the transport coef-
ficients peak and then begin to decline. After that time, the wave
energy begins to become too large, particle trapping begins to occur,
and the mode growth rates begin to change rapidly. These factors
combine to make evolution calculations at times much beyond the peaks
invalid and prohibitively expensive. These problems result from the
fundamental limitation of quasilinear theory: It is a weak turbulence
theory, and therefore, it cannot handle wave-wave or strong wave-particle
interactions. Yet, by the time the.evolution calculations become in-
valid, their main objective, which is a reasonably accurate set of
maximum anomalous transport coefficients, has been attained.

The magnetized evolutions appear to be limited by the ion gyration
times (_fL;l) which are much less than the evolution times. A simple
solution to this problem is not readily apparent within the scope of

the theory in the dissertation. Yet, in these cases too, quasilinear
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theory has served a useful purpose because the calculated transport
coefficients are reasonable estimates of the actual ones.

Recommendations for Further Study

Two of the more obvious immediate extensions of the dissertation
effort are (1) to run more evolutions to determine how the results scale
and (2) to generalize the computer program so it can do instability
evolutions with nonadiabatic electrons. A few aspects of scaling are
fairly straightforward and would require only an evolution or two to
verify. For example, if the temperatures of the species, the ion
relative velocity, and the ratio of the debris plasma frequency to that
of the air are all held constant while the debris density varies; the
change in wave mode growth rates will match the change in debris plasma
frequency. Also, the spectrum of unstable modes will always propagate in
the same angular range. This behavior can already be seen in the un-
magnetized modes for the high relative velocity 200-km and 600-km runs
in Tables J-IV and J-VII. The ratios of the growth rates of correspon-
ding modes are all the same and are equal to the ratio of the debris
plasma frequencies. Therefore, the maximum transport cofficients should

scale as (See Eqn (11).)

Cup new
"oefncw L. g-fl\erm-l new ‘22 w":dd(w?"l“ N I> (125)
cot‘ﬂu E'H\:rm-‘ old

The computer program has already been generalized enough so it can
handle unmagnetized electron-ion instabilities. In this generalization,
the electron dielectric is computed numerically using the same procedures
described in Appendices F and G for the always unmagnetized ions. This
numerical computation is necessary because the electrons are not alvays

adiabatic in electron-ion evolutions. More importantly, however, the
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program needs to be generalized enough so it can evolve the modified
two-stream instabjlity because the wave k's for this instability lie
close to those for the ion-ion instability. (See Table J-V.) To do
this, the routines which calculate the magnetized electron dielectric
have to be modified to accommodate a non Maxwellian electron distribution.

Another relatively straightforward extension of the dissertation
effort is a further optimization of the program so it uses less computer
time. The bulk of the program execution time is spent in updating the
wave modes so the best way to save time is to reduce the number of wave
modes followed during an evolution calculation and to reduce the
frequency of mode update. The evolution results indicate the feasibility
of these reductions because only the few fastest growing modes really
influence the ion distributions and because the evolutions can tolerate
a small degree of breakdown without much loss in the accuracy of the
transport coefficients.

There seems to be no convenient way to extend the program to
include electromagnetic effects. It would have to be modified extensive-
1y unless, somehow, the ions could be assumed to be electrostatic. This
extension would allow the evolution of magnetized distributions with
very high relative velocities. The electrostatic criterion, Eqn (78),
is violated at these high velocities because, in accordance with Eqn (18),
the wave k becomes too small. The desirability of such an extension is
not clear, however, because the ease of the electron motions along the
magnetic field 1ines would probably preclude any unstable modes which
propagate at large angles to the streaming cirection. Therefore, one-

dimensional hydrodynamic theory, which already has been cone, would

suffice.
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To conclude this chapter, a quick summary of the entire dissertation
is as follows: In Chapter I, the connection was made between the
dissertation time evolutions of plasmas with three particle species and
the debris-air coupling problem. In Chapter II, the quasilinear equa-
tions were presented, and some physical discussions were made regarding
these equations. In Chapter III, the solution procedure for the equa-
tions was explained. The solution of the equations describes the slow
time evolution of the ion distributions which is caused by a spectrum of
weak electrostatic waves. In Chapter IV, the results of the evolutions
were presented. And finally, in this chapter, the results were sum-
marized. The general conclusion is that a fair amount of momentum
trans fer tetween the debris and the air occurs for the Tow relative
velocity plasmas but 1ittle occurs for the high velocity ones.

As a final note, recall that the dissertation program can be
applied to other areas than the high altitude nuclear burst problem.
Such other areas include the bow shock of the terrestrial magnetosphere,
the magnetotail, and the controlled thermonuclear reaction problem. In
fact, the dissertation techniques are often applicable for a general
physical problem which includes two low density warm ifon beams and a

single electron distribution.
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Appendix A

The Derifvation of the Magnetic-Field-Free

Quasilinear Equations

The derivation of the field-free quasilinear equations for electro-

T

static waves starts with these nonlinear Vlasov-Maxwell equations: . ]

24« . 2« gae 2, Ifa _ (A-1)
t ; 31’ " S el S
= 3/:; E = 47r - ;d-";LﬂL"’ %41 (A-2)
& where £,(5, B, 4) = fus (B, D + fur (5,7, #) (A-3)
i B =E, = o © (A-4)
~m,, = number density = 5/3%,4,(;»‘) (A-5)
P | 2 b i
} E = E(x,A4) (A-6)
}
i 2 = |2 (A-7)

and < denotes plasma species (debris, air, or electrons), q,e denotes the
i charge of the species, and m, denotes mass. The initial density is

| . assumed to be uniform. The Vlasov equation is spatially averaged with

r . the average defined as

2ol = f”“ #( (a-8)

to give because {f ;> = ED>=o:

0 Lo < ) = .
: Ofue _ _ %—;5—/_‘—’._'<E7¢,> (A-9)

, oA
' | Note the quantity <Efﬂ> is of second order. Hence, the time rate of
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change of f 1s of that order. When Eqn (A-9) is subtracted from Egn

(A"l)s
aﬁl - b Al L2 = 3 oo
Pk Tt - -

i =l % ;%7 [Eﬁn B <E7{.;,>] (A-10)

With the spatial Fourier transforms defined as

.{,(/V',A J‘) ) e . _,‘.Z'/;. {“,(,;l;’f>
{{ E(L, a‘)g i )’”I"“‘ E(AF,4) (A-11)

- ol

fal %243 2 Gl 2 1) |,
f“ {[_—"(;,x) (2 ¥’ JJA £z,

the transforms of Eqns (A-9) and (A-10) are

' e B2 2 [é:; : (m)’ foté ECAD ful B5D] 013)
J
, 3{_4.(‘;}”,))-’/“4 B LB, 2, A = - B2 B A)- s
| 'z (£, 24)  (a
8 o [ a2y, HED
I The Green’s function for the operator on the left side of Eqn (A-14) is
o -,‘(:A ';;-2‘.
G(AL, L) = = (A-15)

so the integral equatfon equivalent to Eqn (A-14) is
By .

7(,(,(,7;;; /f) ix %.u(/z v "0)-&

Ak ﬂjjoa' e {E(/. 4 )—f‘————(” 4.

T -, p ).u(/fx /V,J‘)
o YA E (XK 47) £ 3 e
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When Eqn (A-16) is substituted into itself to fterate, the first few

terms of the result are
Al &, 2 4) = fuy (£, 57, 45) 27
g T j . -“A-; ’_. - ~
—444'4’;}#'1"'4 151’4,1,) o QZJ:’:;V)f,)
[

—

AR o

L

ik

-

-.,‘,Z.i-'f 4 'Z A:jl -, T ol |
2 ! r AN ’ - ’
R e o)(ou.e _'{M E(A-4,7)

- SVl I :
’a%v_:‘[#l(‘é,;)/¥=0>—e <d ] (A]J)

The first term on the right hand side of Eqn (A-17) is the free-streaming
term based on the initial disturbance to the distribution. The last

term describes the effect of coupling of energy from one wave mode at a

~given X into another. This term is ignored as each wave mode is assumed

to proceed independently from all of the rest. This assumption is good
when the wave amplitudes are small, first order quantities. The
meaning of "small" is described in the Ciffusion Analogy section of

Chapter II.

The electric field is assumed to be in the form:

= 7 (A, D)
E('Alf) = E(,A,Z‘:o)_g 4 (A-18)
o) = o iy B
where £ (4 ,4) = 1zl EC4,4) (A-19)
because -;7;, X E(I/;‘) = o (A-20)
The variable s(k,t) is defined so
34252‘) & CO(ZJJ‘) (A-Zl)
el # —t
or «(Z, 1) = [t w( A, 4") (A-22)
(-]
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The time varfation of co 1s assumed to be slow compared with w;l where
w = w o+ few,. In fact, when w £ aw(t), Eqn (A-18) reduces to

i
E(L,4) = E(4 +#20) o (A-23)

From the condition that E(X,t) must be real so E*(X,t) = E(X,t) and from

the definition of the Fourier transform,
X-Z,#) = E(4,FD
ET(-A4,4) = E(4, (A-24)

When Eqn (A-18) is solved for s('l:,t) and Eqn (A-24) s used,

a(-A,) = -4, ) (A-25)

and w(-4 ) = - *(Z;j) (A-26)

The fnversion property of w(f,t) in Eqn (A-26) is often very useful.
The second term on the right hand sfide of Eqn (A-17) 1s changed by

"S';_:f - > [A'(,Z-,::'—-a(ll#ﬁ)’
PV B . | = i
TR T 6 A e

and by integrating by parts. The integrated part is saved, and the
fntegral is neglected because it is of third order. Eqn (A-17) then

becomes after the mode coupling term is dropped:

2 - . YT
,{_,,(A,Ar,#) = 7(,,(—4,”)3‘:0)_1
— e ‘A:Z'”Aj_b -
4 r Py 2 . ol ® -.J -2
Mgl A[./Z-’V' - w(.z’j)] ;” (A 8)

Equatfon (A-2), Fourier transformed, is

4T 27« -tiﬁ %ll(»z)z;’,f) (A-29)
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where Eqn (A-20) is used again. When Eqn (A-28) is inserted into Egn

(A'zg): =A b Ko(ﬂ,j)
AT e 4 /3”
I = Z g AL f‘(” [ 4 7 ~w(X,D]
- A,j) ‘z *‘,‘f
s T St (Z 5 Feo .
- Z A h ECE,F=0)_- 5 = € de”
‘4(A’f) = (A-30)

o
/‘"«/“ j,_‘tr D)
where, as necessary, the integrals are taken below the singularity in
the denominators to insure the results are analytic across the real axis
in the complex frequency plane. Thé integration symbol J; denotes this
process because the process is equivalent to integrating along the Landau
contour. The first and second terms on the right hand side of Eqn (A-30)
are the free-streaming terms. These terms are not associated with
growing or decaying waves and phase mix to zero in times of the of
(4 o) (A-31)
where ay is the width of fkl(fzv,t=0) for the first term and 1s the
width of g_o(V,t) for the second term. These are the times necessary

for the particle free streaming to smooth out initial spatial inhomo-

~geneities. The time asymptotic form of Eqn (A-30) is, therefore,

2 £ 31
/ Z'—L—qw == SJM ; “( - (A-32)
S w4 [Z.+- w(A Y -

which is the 1inear dispersion relation for cv = OJ(a.t). This equation
is valid for both damped and growing wave modes. PMote however, the waves
cannot be too strongly damped because then the waves will die out before
the free-streaming terms go away; The damping time which is approximate-

1y aJ;l must be greater than the time given by Eqn (A-31).

101




R e m—
. ey s G S LS e ’ - -

AF1T/DS/PH/78-1

The quasilinear equation for the time rate of change of the distri-

bution results wten Eqn (A-28) is inserted into Eqn (A-13):

_ﬂ’f_”_}:_,&i):.

Ay QAT

g

{V——-ao v (zﬁ)’;"é E(’»’*/")[ 7{.(,(»4 A, A=) o™ LA AT

Y-S
_gue E(ED -2 E(Z #=0) ,gjg.(»;j)] (A-33)
Mg, /4[./4 A - aJ(—Z;j9] o+

! When the free-streaming terms are neglected and the integral {is taken

PP -

| below the singularity,
‘ 3,6,(473,1) " %}.‘:L‘ij&(«é
T e V->e0 v

E(~A 4 ELL D

‘ e g (z'?)’

o = (”4

f . LA (A-34)
o N '-N(/’)‘)]

L ‘ The free-streaming terms can be neglected for times greater than (Akv)'1
where ak is the width of the wave spectrum and v is a typical particle
velocity. This criterion is similar to Eqn (A-31).

l The spectral wave energy, € (k,t), and the quasilinear diffusion

¥
coefficient for species «, Dd('\'/',t), are respective]y defined as

A | ECA /)E(Aa‘)

T S —

f(,él/‘) Z v V Cam)? I (ergs) (A-35)
f | = gt o EENDAL
| Dy (A, 5= 3T 0= {AA x[,Z.;r‘—w{Z,z‘)]A" (A-36)

Therefore, Eqn (A-34) becomes

el 2 . 2. [, 12,10 el D] e

. oA FY-
The time dependence of the spectral wave energy from Eqns (A-18), (A-24),
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(A-25), and (A-35) is
N = 1IM[¢4{»A)/*)]
E(,A,f) = E(A,)"-'O).L (A-38)

When Eqn (A-38) is differentiated and Eqn (A-21) is used,

AE(;:J‘) s 2e EDELE ()

A more convenient form of the diffusion coefficient results when Eqn

(A-36) is broken into its real and imaginary parts and Eqn (A-26) is

used:
D (#,#)=7 o LLA[(I” " (Zf)) +w‘(AJ)]A’" (A-40)

where f(-,z);(-_o) = g(,z);f:a> (A-41)
has been assumed.
Equations (A-32), (A-37), (A-39), and (A-40) are the simultaneous

set of quasilinear equations for wave-particle interactions.
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Appendix B

Conservation in Quasilinear Theory

The equations of quasilinear theory conserve matter, momentum, and
energy as can be seen by taking the first three velocity moments of Eqn

(10). The first moment 1s

TJ/\? 2 fue () o( % = f.._»__['g (A2 —-é———'(”j] (B-1)

o QA s oA
d (ym, - £y [5. 22
5:’.-(’5‘014"#- = ;JS i DaL o (3-2)
a/"\u{o - (8-3
ot - ° )

The surface integral is at infinity because the velocity integral is over
all space. Equation (B-3) shows that the species densfty fs a constant

so particles are conserved. The next moment is

Sa‘v""a./‘: 254_‘ Jh/»uv [Dd e ] (B-4)

o b =
B J i o i B
where the chain rule and the divergence theorem have been used. W¥hen
Eqns (9) and (A-36) and the sum of Eqn (B-5) over all of the species are
all combined,

e ROy IR S 9773 70 SV AT B

moncn"’um
(B-7)

= O
Equation (B-7) follows because the integrand is qu. Therefore, momentum

i{s conserved. The third moment 1s
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i Y e 2l 2]

oA oA
—_—o~
Sfcu'esd - - é-ér’
o article 1z e - "'/A’
| peticle |2 4Mg.e 5 f 3.3 7 (-9)
ot Smeray Tl ‘_ou‘ E_:L, A [ZF~ o)At

where as before Eqn (A-36) is used. Equation (B-9) is broken into two.
separate integrals one of which is odd by letting

LF T —ot w (B-10)
The symmetry property of cv, Eqn (A-26), and Eqn (9) are also used.

Therefore, after the sum of Eqn (B-9) over all of the species is taken,

ey T
arficle -
ot ‘:nu‘az = -2 50('4 w, g (B-11)
vel - A
g 95
- - — B-12
= - [od 53 (B-12)
~o
wave
= 2 | tnergy (B-13)
oxt vel

A loss in particle energy is balanced by a gain in wave energy so total

energy is conserved.
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Appendix €

Electron Dielectric for a Nonzero Magnetic Field

The dielectric is derived from the first order perturbation of the
electron distribution function calculated in the Lagrangian coordinate

i system. The‘Lagrangian systenm %bllows the zero order trajectories of

el dehdaton doidid oo o SR ln S

the electrons. The derivation is very long and tedious so only the
highlights are presented. For further details, see Ref 16.

f The rate of change of the distribution along the trajecto}y'i =

x(t) is
i . SAw Ly e AT
. % = 3o + —fx:";}"‘f' ﬁ: AT (c-1)

The change along the zero order trajectory is given by

(AN o Me _ o FxBy O
(dj'o 3 ' é}é“ 37 (c-2) |

s (= 1

where E =0 (c-3) i
( 2o . d

g—u ) = zero order solution = 0 (c-4)
{Q(A-;//?;f) = %go(’.‘-’;) 1"/¢l (A;‘l;)j) (C-5) {

e = lef (C-6) ]

Equatfon (C-4) describes the helical motion of a charged particle in a

uniform magnetic field. Vlasov's equation, Eqn (1), after linearization

is
D= D B _ 2 gz BxD) e
E?*”’jz—x:—m_._ T o {e'—MQ(E,f- ~ )J/V" (C-7)

The result when Eqns (C-2) and (C-7) are compared is
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rate of chkange of .
(éf“) = |f,q along the zerof = o (E + /_:_X_BQ Jffeo (c-8)
- ¢ ' A 4 c AF
At/ order trajectory -

where Eqns (C-4) and (C-5) have been used to eliminate (& x E,)%‘—"

The solution of Eqn (C-8) for growing wave modes is (The solution

for damped modes is done by analytic continuation.)

Pz S, R 4
{_2‘ A’;‘J;}j) = %ﬂjﬂl[é(&:’#,}_’_/\r X U;( )]a/‘o (c- 9)
—ot

c

where the integration is done along the zero order trajectory. Equation

(C-9) is rewritten using Maxwell's equations assuming plane wave

solutions: P 1§
K - 02 / JL‘/A' A_""“A:WJ’“ e
fuil 7, 3D = 2 (it e E(#1 47
N
';‘;,/Z _.’QI a o/\f')
[L e ] '{3;;' (¢-10)

This equation in the Eulerian (fixed) coordinates V, X, and t is

s A/V‘

Far (2,4 = SA’“W{AAa-,wf,L =

(- hpen T b g (1~ con 1Y) + —J"{'&(_A?m_a*r
cha(1= ca ) + Ay (- Ag?) 4 w’r]z

‘ gffx (Vo crn T + ”?"":“‘Qa/’—)[ /eoi + éz—(%eoz
—/'fz/eu)] + Ey (- vy ain T+ 2os S T )

(4

Loos # T (oo ~ 2 Faes)] + 62 [ B cmna T
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+I£?Mﬂ‘fl~) + -,—:)-4(.,‘.40‘;;_{1‘1'—,4? M-ﬂcT)]

* (feor = /";{4«»4) t £, %“‘g (c-11)

where 1T = A-2' (c-12)
(el (B, |
., = electron gyro frequency = e C (c-13)
- A

B, = B, 2 (c-14)

= _L_ O feo - __!_ 3 2o n
feor = 2p —5175, T A, oy e
= O fee C-16
feor 3,3; (c-16)

The last two equations follow from the azimuthally symmetric form of the

zero order distribution:

k3

Ay
feo = Feo (ST 5 43D (c-17)

2 LR kS
where A +M7' (c-18)
Note Equation (C-11) is of the form:
,:/:/;-ij'

- - = — 7 -19
fail 77 = 2 for (7, K ) (c-19)

The remaining equations will only deal with the Fourier amplitude,
fel(V,'ﬁ,w). The phase factor is dropped.
The spatial average of f,(V,k,e0) in the direction perpendicular

to the ambient magnetic field is defined as

o

gDy = oy £ (c-20)

The zero order distribution is assumed to be a Maxwellian in the perpen-
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dicular direction so o
el Ay + )

0/141_‘ T T
fco( -—“‘) Af,) = 1—,:7-)2?— }.O(Ara)_z_ 2XTey (c-21)

where the distributfon in the parallel direction has yet to be specified.

The spatial average of Eqn (C-ll) in terms of rotating coordinates 15/»
RS Uy AR re kg aOT

< '{u >'L mz—ob ©
A-g XT<.L A g_ XT,
111:”‘ IA-“ I ) + _Qtnlm-ei - Iﬂ‘,>+§2:[m (c-22)

where 1 = "Efj‘.:_f’l?; (c-23)

/2)( Tt
_Pre= average gyro radius = e (c-24)

Sle
iy = ¥ Ay (C-25)
€= Ea ¥4 5, (c-26)
. _ e geo Ea, ny % AoV fe
ga/? XTQJ_ ( XSF(.L )
,(AE f’“‘ _ Ay Ea> (c-27)
do = Beld) = " Tl ) (c-28)

2= Eq %" (C-29)
2

The Bessel functions, Jn(il) and In( A), in Eqn (C-28) are respective-
1y the ordinary and modified Bessel functions of the first kind. After
the distribution in the z direction is specified as the following

Maxwellian with a zero drift ve1oc1ty-

M.Q’V'zl
Ane - ———
&co(/"'}) = [7(),)( e”] £ 2 X Te (c-30)
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[
the total spatial average of the first order distribution becomes
2 -A e In
j‘/ov{u j"l"‘r <{u> L Am,, IE—X—?:;]
N E
. Tew mSle Sioe =

] zi Ter Aty Eafola) s & ("JL*
; NT - 00
| - £ Teu :> Ea ] .
f - =L\ =~ - + —— | R (« (c-31)
i i jl) ( Ter ! “A’T ! A‘)

.‘. where A?= 45° (c-32)

| By = = 4 Z(2) (c-33)

‘ a2XT.

- ACME 7/ o [ 4 ot ()] (c-34)
i o+ MmSle
E A = (c-35
i o /41 7‘XD// )
i 'L

) = plasma dispersion
| /2/ ) function (Ref 17) = J’JZ o (c-36)
! { 2 =~ olm
l ! The electric field is assumed to be electrostatic so
; E(L o) = -ih B(h w) (c-37)

where ¢ s the electrostatic potential. When Eqns (C-37) and (C-31)

| are combined with the Fourier transformed Poisson's equation,

2
o A E(L, @) = 4#27«4{40‘%«,(5,/; w) (c-38)
o —on

T-¢4

= ‘*"1¢ Tenr
6 Z G B -

| > the following form of the electron dielectric results:
|

: I [ y
-%;5—;‘21;[( ”(wuu) J1>’z(o<
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+
4, o*
where Cpie = plasma frequency = 7/ — . —
-';Ar = Tu.
Tz; = Tc//
Ce,,/.,_ = .therma'l speed = X. I::) 2

The infinite sum has been eliminated by assuming
A <<l
S0 T, €AY =)
L, (2D = —?;"

IL«!Z—;.(;D is of order ).2 or higher

Only the zero and first order terms in 2 are retained in Eqn (C-39).
This result is also valid for damped modes because the definition of the
plasma dispersfon function includes the analytic continuation.

Equation (C-39) appears to be singular for propagation exactly

perpendicular to the ambient magnetic field. However; the 1imit of the

dielectric as kz-—* 0 is

T T
Ao AT R [ Ny

which is well behaved,

E: (@ -0+ Re) Z(‘x-,)]

(c-39)

(c-40)
(c-41) ;
(c-42)

(c-43)

(c-44)

(c-45)

(c-46)

(c-47)

(c-48)
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Appendix D
Analytical Form of the Field-Free Dielectrics

An analytical form of the field-free dielectric integrals in Eqn

(9) results when the following two-temperature Maxwellian is used:

mg { / -!'/1 _md(”4—VJ)\— ’md’v'ez

f&,(ﬁ?) = Moo X l7;~152 2 AX Ty AXTy 2

(p-1)

where the streaming velocity, V,, 1s assumed to be in the x direction.

To begin the derivation, Equation (2) is rewritten as

S gy A GBS e
l Z"’J:A’ [Z.7 - «(Z,D] =0 Z 4L« =© (D-2)

4T 14}hn
where a12; = (species plasma frequency)2 = §:~ux = (D-3)
e, 7, 4)
&l 2y = L= gt Lz (D-4)
ofo M. A

When Equation (D-1) is inserted into Eqn (D-4) and the result is

b

multiplied by k,
lé Gd. (”;j) o 1r CJGCJ? ’Ad +4‘z T

Czn- CJE
t r
- VO '4’3‘
F N 2Cae (D-5)

. 2
where the one-dimensional root-mean-square thermal velocities in the x

and z directions are defined as

- / X Toaa 2
CK/);? = ————/;‘—(—J—- (D-6)

The most convenient way to do the integral I, in Eqn (D-2) is to
perform a coordinate rotation in the Vy-V, plane to align the new Vy
axis (Vx') with the wave propagation direction. Then, the singularly

in the denominator appears only in the v_, coordinate so the integration

X
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in Vi can be done directly. The relatfonships between the wave k and

velocity vectors in the old and new systems are

ey ye cea® -—an8\ [y A
(Afz)) (,A,) T el oo ,4? (0-7)

When these relatfons are used along with the fact that the Jacobfan for

a rotation 1s unity, the result after much algebra is

Id.:—!"_z._'_ | J.JV' aLV' (Cdﬁﬂa f(cdd-(di) ;

e e

3
{C,(‘/V‘" -2V, c}i/v-rm& + AAL, A/;?'(cd; cj;)
2 B2 O + c,,e/v*, + AV, C.{g Ar a6 PV o2 (p-8)

p

s 2% ¢y Cas
where € s = Ce cen’® + CJp avh B (0-9)
R D-10
Cag = Cuman6 + Cyj ca?® (0-10)

The angle & is that between k and the v, axis. After the integral 1in
vy 1s done and the result fs simplified, the following simple expression

appears
(Arpr =V caB)?

(/U' Q = V‘( m&) - 2 cd-‘&
T, [ i P

This form is related to the derfvative of the plasma dispersion function

as defined by Fried and Conte (Ref 17). This derivative is
8

Z'(2) = - = din e 2" (p-12)

o~ By

L
Hence, the final form of the dispersion relation results when Eqns (D-2),

(0-11), and (D-12) are combined:

(0-13)

J
0O

I‘Zéd‘-‘ -"' 2’42( /‘2(3‘)
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where c , is the root-mean-square thermal width in the & direction from

Eqn (D-9) and
(.)/II' - V,(Gvaa'

Zs = /2 >

Note oof).(/cwz(9 can be rewritten in terms of the species Debye length in

(D-14)

the © direction because
T
wpa |

(p-15
Cao )o:a )

Incidentally, the dispersion relation, Eqn (D-13), has the same form as

a one-dimensional dispersion relation.

The dispersion relation is valid for all values of the complex
frequency because the definition of the plasma dispersion function con-
tains the analytic continuation across the o, axis into the Tower half
of the complex frequency plane. This continuation is equivalent to

conducting the integration fn Eqn (D-12) along the Landau contour.
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Appendix E

The Derivation of the Anomalous Transport Coefficients

The calculation of the anomalous transport coefficients for momen-
tum and energy transfer is done using the formulas derived below. These
formulas are obtained from the first three velocity moments of the
spatially averaged Vlasov equation, Eqn (A-9). This process gives the
standard fluid equations of continuity, momentum transfer, and energy
balance with anomalous collision terms instead of the normal collision
terms due to binary interactions.

In the derivation, the following definitions are used:

o0
Mo () =_£¢Tr‘7t.(,w‘,;r) (E-1)
o~
i (F, A = L A7 L (5,7, (£-2)
=5 o~
md,\/.‘(l) = L’u’.‘; fdl (/{:l#> (E-3)
oo
(mV)“(/;.,JT) = _[.ﬁn;‘{d'(/r)”’j) (E-8)
It XTR) = Lo (2 s (7, 1) (E-5)
—ob

where T, is in degrees Kelvin, and
4~ = random velocity = - iz; (E-6)
For convenience, Eqn (A-9) is repeated here:
2 — =
S | _ PR (F. S (E-7)
oA g ~
The velocity-to-the-zero-power moment simply gives the equation of
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continuity which is not of interest because the plasma is assumed to be
initially homogeneous. The next two moments are done using the methods

in Seshadri (Ref 7: 27-45).
The velocity-to-the-first-power moment of Eqn (E-7) is

Blemi]s - e Jiomiece >
~ob

= g2 LEmyY (E-9)

where the chain rule, the divergence theorem, and Eqns (E-2) and (E-3)
have been used. Equation (E-9) fs the momentum transfer equation with
the right hand side representing the anomalous change in momentum density
due to wave-particle interactions.

The third moment of Eqn (E-7) is

MG ] - e )

b« 5 [op gl 2] e

where the above procedures and Eqn (E-5) have been used. Continuing,
-0 oo
=/ =2 3 <« E" A7 & -V \dF ] (E-12)
R 7 _L for Ve S 47

where Eqns (E-2) and (E-4) have been used. Equation (E-13) is the
energy or heating equation with the right hand side giving the anomalous

heating rate.

Equations (E-9) and (E-13) are put into a more convenient form by

using the Fourier transformed Poisson's equation, Eqn (A-29),
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LA AhECL D = 47’2-7.:-¢JA7';/-('Z;/‘7,4‘) (E-14)
< —o0
and the dispersion relation,
1= 2 €, (E-15)

The plasma dielectric, €, , from Eqn (9) is

< dfuo (1)
- Sfelis
€, = ——7‘—'{4J6/»v o (E-16)

T — —
e A [ 4.7 - w4,N]
When both sides of Eqn (E-15) are multiplied by ikE(K,t), Eqn (E-14)

used, and corresponding terms of the sums equated;

- 5 . RAECET) €ulath),K)
Mat (‘l‘lj) :_iot‘:%lq {.A,A?, f) = ‘{ﬂ'}d* (E-17)

This equation along with the definition of spectral wave energy, Eqn
(A-35), are the main equations used to recast the anomalous collision

terms. In addition to these equations, the integral form of the delta

function,
T ORY § 3
S(L+ &) = (W) Sa"x < (E-18)
-0

and the symmetry of the dielectric,
- * -
€ (-4,X) = €,(4,4) (E-19)

are used. Equation (E-19) follows from Eqn (E-16) broken into its real
and imaginary parts and from Eqn (A-26). Therefore, from Eqn (E-9),

:333[’”-‘0"‘"4 Va] = 7:!"(77’%'3’_20(2".2_-&%:;2(232‘)

o ’ﬁm,.,(j',f)\) (E-20)
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-t

= z,ff L4 ECLN €L, ), B (E-21)

= 23. -..ZF(Z,J‘) I”\[Gd (Q(l:}))/z)] (E-22)

i —

and from Eqn (E-13),

o ,
%”Ho "%g[i = -l(E (/hV)‘”> 7J4<E ’”.u> (E-23) i

o

| = 7.‘(4‘1”1 Jp(,l" 4']‘;AE(JA i)(z.”)jjdz “A ”m‘\-/‘).{/l.lf))
e s T gocu C 2D :

= 'uj.dl' E(L,A) w (L4 €al (£, 1), 5D

2 S AL ECI D LT, €, («wlZDE) (E-25)

= -2 ‘S,:LZ E(,Z,f)gw,.'(j/) Re[éd(fv(/; 1, I)I

+ ()3~ E ) T € (ol 2,9, z)]g (E-26)

where in the first term on the right hand side of Eqn (E-23), Eqn (A-28) 1

without the free streaming terms and Eqn (B-10) were used to obtain Eqn

(E-26). Equatifons (E-22) and (E-26) are the normal fluid momentum
transfer and energy balance equations for a collisionless homogeneous
plasma with added anomalous collision terms on the right hand sides.
Because the plasma is homogeneous, all of the changes in the momentum
and energy densities are due to anomalous transport.

Although the above derivation assumes the plasma is magnetic field
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free, the generalizatfon to a plasma with a uniform magnetic field is
very straight forward. In fact, the resulting anomalous transport
coefficients are the same as those in Eqns (E-22) and (E-26). With the
addition of the magnetic field, Equation (E-22) becomes

Bl ] - mages B2

-_--1}:&7;,2 ECL ) Im[ €l Zd] (2D

where E; js the magnetic field. The energy balance equation is

unchanged.
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Fppendix F

Numerical Form of the Quasilinear Equations

In this appendix, the quasilinear equations are each cast into
their numerfcal forms by the extensive use of symmetries. The resulting
equations are the ones put into the solution program controlled by
IONION. The diffusion equation is discussed first.

The diffusion equation is solved only on the upper half of the
computer solution velocity plane shown in Fig. 6 because the equation is
symmetric with respect to reflection across the Wo axfs. This half
plane is mapped onto a rectangle (the computer mesh) with its lower left
and upper rfght corners at (-1,0) and (1,1) respectively. This mapping
is described by the following relatfons:

/V;ko Ay

Ay = s - VDA (F-1)
A T C g (F-2)
Jr—- 3
where -1 £.u, £ | (F-3)
o £ ay £ (F-4)

The variables uy and u, are the mesh coordinates. Three separate sets

of the three transformatfon parameters; Veo? Vz0° and VDA; are used for

z0
each of the plasma species; debris, air, and electrons. Therefore, a
given value of a mesh cocrdinate refers to three separate velocities
depending on which species is being referenced.

The transformation parameters are determined from the inftial

species Maxwellians and are held fixed throughout the time evolution.

The parameter VDA is chosen so the computer mesh is centered on the
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electron distribution, or for the fons, is centered one thermal width
in the Vy direction away from the distribution peak on the side toward

the other distribution. The scale parameters v__ and V,, 2re respec-

X0
tively set equal to three times the species thermal width in the Yo

direction and that in the o direction. These settings of the trans- .

formation parameters cause the majority of the mesh points to correspond

to the velocities of the interesting parts of the species distributions.
For good numerical results, the mesh spacing (the number of mesh

points used) in the u_ and u, directions are chosen so at least a few

X
mesh points correspond to the resonant region (where Eqn (18) holds).
The mesh spacing is also chosen to insure sufficient accuracy of the
dispersion relation integrals described later. This spacing is fairly
critical because the mode growth rates depend on the distribution
slopes.

An interesting result of the above mesh transformation procedures
is that a given plasma species appears the same on the mesh regardless
of its temperature, mean velocity, or density. For example, a sketch
of the initial debris Maxwellian is shown in Fig. F-1. Therefore, the
numerical accuracy of the evolution is relatively unaffected by changes
in the plasma distribution.

The diffusion equation for growing modes, after expansion of the

dot products and conversion into the mesh coordinate system, is

Jf.u(ﬁ,j) - D (D Gl By’ 2‘;{, (=, 4)

oA ALt  duny
P O b e - 1 D
4' 7\ Dﬁz(ﬂlj) /Va'. /l)'ao —'a”” a”i

(—.AA;)', 31—?/'(5(/:,/7"3
<) oMz

* Dyg (it 4) =
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1 +1

TOP VIEW

m v 3
-1 I I o
DEBRIS THERMAL WIDTH

Fig. F-1. Initial Debris Maxwellian Distribution on the
Computer Mesh.

e daiaiRai

COMPUTER
£ MESH

— - — m— — i
—
L

+VA
+ {Cvxm; (2,0 (r-md) ™ _ Doy (5, )

Aye

' 3any (1= 3" N R
i , S MNx -~ i)_ﬁ_i__ + gédi‘i? (‘4:/’1)

/V',X-: JM/r

2 - "
.(, —Ml‘) _ Dz.‘,(dr\.)j) ?MQ(I;M?)L a%‘o(*;j‘) (F‘S)

e, g2 ot

e - 'y
here b. (2 #)= g{E2 o E’EA,/).»AW o (4, 1) (F-6)
where D (& ¥) 8’7‘(/,,“}’944 [(ZA) = o (X, P+ e AP LA

)= ﬁp_&" g(z./f)»é-a'é? CUJ{A—:#)
Dre (4) m(fwd};;dzf(-j )~ o ()Y (AT A (F-7)

L

T2 e B ATt DT

27 ;7 E(LA) b s (E)
- = 2 2 X A J
Coena D= 16ME) ] A T n At et t5 T (F-9)

NG ECh, ) by cwi(h, 1)
B 2
Garez ()= 'mt’“)\é.s T 70— cnlZg D 2B DT (F-10)
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Equations (F-9) and (F-10) resulted from the combination of the velocity
derivatives of the diffusion coefficients given by Eqns (F-6) to (F-8).
Equation (F-5) appears to be an elliptical-parabolic equation with two
spatial variables, u, and u,. The right hand side is elliptic because

T

the coefficients to the second order terms are positive definite, and

=3 w3 - \PATR
[D (I::M')][D%? (I—A:t ] S [qu L(("JAA')(,‘M!)} } (F-11)

AVae A/;l'o /U}o

For damped modes or a combination of damped and growing modes, Eqn (F-5)
must be analytically continued. This process is numerically very

difficult and is not necessary because the growing modes dominate the

solution for the times of interest. (The fastest growing modes build

TR ———

up the largest wave energies which modify the distribution the most.)
A mixture of damped and growing modes appears only late in the calcula-

tion anyway.

-

Because the plasma species distributions all go to zero as v, or

v, goes to infinity, the boundary conditions for the diffusion equation

R —

are relatively simple:

/do(’“zx"‘ l, -’“%,Jf) =0 (F-12)
| %0 (/“J)v:'") Mi)j) s (F—13)
feo (M, Ma=1, A) =0 . (F-14)

The symmetry of the upper and lower half planes determines the boundary

condition on the mesh bottom. The inftial condition for each distribu-

tion is the initial Maxwellian,

“Ndo

%""("7“1;{2") = 2MCur G =
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where v, and v, are given by Eqns (F-1) and (F-2).

In the method of lines, the spatial derivatives on the right hand
side of Eqn (F-5) are written in terms of finite differences, and the
resulting set of simultaneous ordinary differential equations is evolved
in time by the GEARB package. The interior including the bottom of the
mesh is broken up into a series of vertical 1ines of mesh points with
the points sequentially numbered. The resulting numbering scheme is

shown in Fig. F-2 for a n, ty n, mesh where n_ and n, are respectively

X

the numbers of mesh points in the u_ and u, directions. A finite

X
difference equation is written for each of the numbered points using
the following finite difference formulas:
2
-——{—-9 P 4":""“% Y 2 {J—ma (F-16)
dary A2 )
x

3‘2&0 - '{A:“l“/ht ":/A'H—Au -~ i-ltms +'{,L..J.m, (F-17)

dnydiy YA, Ay
9‘;0‘0 - %"Ifl = 7-'/4 + ’4-4‘—‘ (F-18)
omg ':
Ifps _ _Aitmyg = fi-mg F-19
3{;:, IR~ (F19)
%é(ﬁ o A = Al (F-20)
M? 24.1

where hx and h, are the uniform mesh spacings, and i is the mesh point
of interest. As shown in Fig. F-2, this is a nine point differencing
scheme. For the difference terms on the top and sides of the mesh, the
boundary conditions, Eqns (F-12) to (F-14), are used. The equations for
the bottom mesh points use the symmetry of the distribution. For these
points, Eqns (F-16) and (F-19) are unchanged, Eqns (F-17) and (F-20)

|
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Fig. F-2. Mesh Point Kumbering Scheme in the Method of Lines.
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vanish, and Eqn (F-18) becomes
2
2 ise = Bod
a-/"i bottom Az

The finite difference equation coefficients are always evaluated at the

point of interest.
The equation for mesh point i from Eqns (F-5), (F-12) to (F-14),
and (F-16) to (F-21) is

"'Vo(/n,i /at Atl=my T V”di,i /—m‘-; - \/d”. .
PV b 7/"“"“ T Vaard fudmirme tVF /.u'wni
+ Vd/n,s' & AtItmy o

9 .
Lo —-)é,il = deA'A %al /“‘M% \{IA /ﬂA + \/.(?,c %dAil+vFJﬂA%l AfA(F-23)
Lo#dm

(g () (=BT T fial)
wherevcm[j\ lei Srns e Dea o NF-24)

Vﬂﬂﬂ,,;:f Sawa g—- gsam g (F-25)

X 2/ ¥
(I-Ag)j (, (l‘«“?) 2 ?MQ(/-A )]
b (fomre)” ) Imellag)ff
ol +(2£; Gaaz Aae Dea Arqs (F-26)

VMG = g Same g—— g Same 3 (F-27)

[0~ a2 (- u2)}
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(F-28)
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ad w3J
2 (“"/0‘ ) 2 (l‘/“?
Vi = = 2 :

3

2 (1= 3)
Viai ® 73 Dee — 5 a (F-30)
2 +o

The set of simultaneous ordinary differential equations each given
bty Eqn (F-22) or (F-23) is the set which is solved by the GEARB package
using backward di fference formulas. The set is stiff because the
coefficients contain the exponentially growing spectral energies of the
wave modes and because the method of 1ines usually results in a stiff

set of equations (Ref 23). The set is of the form:

FT = T F3 (F-31)
where %_é'-‘
o > fur
e 5 §'§ (F-32)
a'dNJ
L 55 N

= |~ (F-33)

fav3
The system matrix and Jacob;'an, J, are the same and are defined as
- “
J'-'}f = .E_E‘I_ (F-34)

BF.T?;

The matrix and Jacobian have the banded structure shown in Fig. F-3.

This banded structure is exploited in the GEARB routines to save computer

storage and to increase computational speed. The total number of

ecuations, NJ, 1s

. b s s
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Fig. F-3. Banded System Matrix and Jacobian of the Ordinary
Differential Equation Set.

NT = (M/x‘l)(m}") (F-35)
and the total bandwidth of the Jacobian, MW, is
MW = 2m + | (F-36)

The 1ines in the method of 1ines are taken in the vertical direction
because normally n_< n, so the bancwidth is minimized.
The Jacobian elements contain the diffusion coefficients, Eqns

(F-6) to (F-10), which are integrals over the entire k -k, plane. These
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integrals are done numerically using a wave k grid determined during

the solutions of the dispersion relation for the initial plasma distri-
butfon. At that time, the location of the grid in the first quadrant of
the k plane is determined by locating the area of suitable unstable

b growing wave modes. The boundaries of the grid are constrained so that
i 04 by & o0 (F-37)

0% Ay &0 (F-38)

=

The kZ axis must be avoided because the dispersion relation used is
singular there. The grid is chosen to be as small as possible so only
the significant wave modes are considered.

The first quadrant grid is sufficient to do all of the integrals.

E The waves propagating in other directions, and thereby, having wave k's
i in the other quedrants are incorporated into the integrals by the use
‘ of these two symmetries of the diffusion coefficient integrands: (1)

The integrands are symmetric with respect to inversion in i: and (2)

i the integrand in the fourth quadrant is that in the first with the signs
of the kz terms reversed. These symmetries are rigorously true for
unmagnetized ions and electrons. They also hold approximately when the
electrons are magnetized. The symmetries result from the physical

| equivalence of waves propagating in the &, -, 6+, and - & + T

directions. Thus,

(o, g 1) = Cor (o Sy A) = = e (g, g £ == Con (g iz ) (F-39)
CU,;(A,,, ‘42)3‘) =G (A% "42))‘ )= w-‘.('*éfb'éé)’/) = i (Canydie #) (F-40)

EC oy, hy 1) = Eg gy A = E(—biy, gy ) = E ooy gy £ (F-81)
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Elhn ha =€ (4 gy ) = €F (g hig, #) = € (o, 4D (F-82)

where the symmetry of the species distr{butions about the Vy axis and
Eqn (A-26) have been used. These symmetries are also used in the con-
version of the dispersion relation into its numerical form.

Because the frequencies and growth rates are assumed to be constant
during each phase of the evolution, the only time variation in the
diffusion coefficients during a given phase is through the spectral

energy, £ (k,t). Equation (11) can then be easily integrated to give:

2 (A AI(A-A,) (F_43)

€L =E(LA4) 2

where tO is the beginning time of the current phase of the evolution
and E{(F,t=to) is the spectral energy accumulated from the previous

phases. This result is inserted directly into the diffusion coeffi-
cient integrands.

An initial thermal spectral wave energy, & (k,t=0), is used to
begin an evolution. This energy is assumed to be constant over the &
grid and equal to the plasma thermal energy divided by the available
volume in space for electric fields, the Debye sphere. (A point charge
is unshielded by the rest of the plasma inside the Debye sphere, and

hence, random electric fields can exist only within that volume.)

Therefore, 3

e = s —XTqux ‘ X T e

Sd& &€ a2 ~ 75— Tr.. = Teabe (252) (r-n
E(L A20) ~t Ilamar ] (22 (r-s5)

;l Do mmax AA 5a.J Ai‘jﬁol

where the a k's are the lengths of the grid sides and the factor of one
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quarter accounts for the energy in the other quadrants. The exact value
of this small thermal wave energy is not important. In fact, it is
usually increased a few orders of magnitude in the beginning of the
evolution calculation to save computer time.

Two separate procedures are used to evaluate the dispersion
relation dielectrics. The first 1s used only on the initial Maxwel]iaﬁ
species distributions and is the faster of the two. In this procedure,
the analytical form of the plasma dielectrics given by Eqn (20) or (32)
is used. The plasma dispersion function is numerically computed. In
the second procedure, the integrals in Eqn (9) are numerically evaluated
for evolved non Maxwellian ion distributions. MNote the analytical
procedure can always be used for the electron dielectrics because the
electrons are adiabatic.

The numerical integrals in thre ion dielectrics are done assuming

that ao{ﬁt..t) # 0. The 'Lntegra'l for specieso(, Iy, is
ro= [z (K ) (nhp- L)
R (wnClt) - &)+ XA D)

o - ) 2
(e LA D s
A_.Sc—cl” (w (X, 1)~ LAt (4, 1)

-2 @(-w.;_)‘?a‘v-e[ %%: + aﬁ:/ﬂ«»&]l (F-46)

9/1/"?
_EU_,:_ -AT /&4‘9
o 2

AN =
X" hen

1

where 9(3) ! g >e
- ﬁ.( c (F-47)

The angle between E‘ and the Ve axis is @, The last term of Eqn (F-46)
is the analytic continuation for negative growth rates. It is derived

using the residue of the integrand numerator in Eqn (9) at the singular-
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ity assuming
w‘;(,z,,f) << w,‘(,z,z‘) (F-48)

The resulting residue integral, £xR' is

Lo = 2mifjdo L. e ((F.22-cr(B7)) (0

It reduces to the form in Eqn (F-46) after the coordinate rotation
procedure in Appendix D is used. This rotation allows the delta
function to be integrated in the vx direction of the rotated frame of
reference.

Equation (F-46) after the coordinate transforms, Eqns (F-1) and
(F-2) are applied is

! (L] X0 ()
L= §«a $ A (/,'f,,,.-)m A TP (//Vm:) S 2
wah  § (en (B -LFCON+ e (A, 4) 8

(el iy ) =B RD)

=k SS& _42__*::_%.%(];;) - 2% @ (-eos (4, 2))

.f'ot«z{( e [ 1= and )52 a“UCwez’

Yve ’—’“;- Py

R
T (4 YA
gihree similar terms with reversed signs 1?:

ofu
f;gze and v,

(F-50)

. (J-:)‘) Vo MUz
h = 2ms = B2 _Ten8 —V, (F-51)
where R 7 P - DA

The first three terms on the right hand side of Eqn (F-50) correspond
to the integrals over the upper half of the velocity plane, and the

second three correspond to those over the lower half. The signs in
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Eqn (F-51) refer respectively to the upper and lower half planes.

The numerical version of the ion dielectrics is, therefore,

_ HWT'gdflfl
6‘( - Moz 'A‘L

with I, given by Eqn (F-50). With this equation, the conversion of the

T (F-52)

quasilinear equations into forms suitable for numerical solution is

complete.
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Appendix G
The Solution Program

The quasilinear equations for the ion-ion instability in the form
of Eqns (F-6) to (F-10), (F-31) to (F-34), (F-43), and Eqn (9) with the
dielectrics from Eqn (20), (32), or (F-52) are solved by a set of
computer routines controlled by a master program, IONION. IONION sets
up the problem by reading in the initial distribution parameters and
initializing the variables needed by the solution routines. It then
controls the solution of the problem by calling the proper routines in
turn finally terminating when the solution is complete. The program is
also set up to handle magnetic-field-free electron-ion instabilities such
as the ion acoustic instability, but this feature has never been tested.

The unmagnetized versus the magnetized approach is selected by
setting the input magnetic field to zero or not. Once this selection is
made, the program automatically uses the proper form of the electron
dielectric.

A block diagram of the entire program showing the routines called
by IONION in the orcer they are called is in Fig. G-1. The figure shows
all of the routines or groups of routines used in the solution. Each of
these routines is discussed below in the order in which it is first
called. The discussions include brief explanations on what the routines
do and how they work.

The first routine called is PLASMA. This routine sets the reference
frame and calculates the fundamental plasma parameters needed throughout
the rest of the program. The reference frame is that shown in Fig. 6.

The next routine is GRIDLOC which locates the region in the first

quadrant of the kx-kz plane where significant wave growth occurs. It

134

R T A Sa——




AFIT/DS/PH/78-1

IONION |—— PLASMA .
> GRIDLOC
i L * SETUP
- BOSS ! .
e MAXROOT F+| CONTOUR |- CFCTS
BOLTZMN 4
= VELLOC CROOT DISP
{ FSLOPE [}
> SAVEIT ELDIEL
- FPLOT
- CONSERV
ARRAY
SN X e SATVERLa] DIFFUN,PDB
T COEF, DIFCOEF
¥
= CONSERV COEFINT
| savelT
BACK 1 BOSS
# IEFVOLU--.- BOSS
. U I nxTrts = croor |+ 6ENDR }—+{ ELDIEL
! COM- ) v
PLETE[* FSLOPE DRTERM DISP
| ANOMAL | |
[snap )
—*—j SINGRT, SINTRP,
XYZSPLN

Fig. G-1. Block Diagram of the Computer Program.
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attempts to locate in kx’ kz, and in the_rad1a1 direction as precisely
as possible the exact boundaries of the significant growth region.

GRIDLOC calls MAXROCT which controls the Tinear dispersion relation
solution for each trial kx and k, from GRIDLOC. Of the wave modes found,
MAXROOT saves the one with the largest growth rate. Usually, the input
parameters are adjusted so that the root finding routines look only fbf
_growing modes.

The routine SETUP is called by MAXROOT to convert parameters such
as wave k and Cebye length from rectangular to polar form. This form
is needed by the dispersion relation routines called by the root finders.

The next set of routines, CONTOUR, SEEK, and ANGLER, called by
MAXROOT locates the dispersion relation roots by searching over a large
area of the complex frequency plane. The set, developed by Giri and
Baum (Ref 24), divides up the plane into a series of boxes, does a
contour integration around each box, and then uses an extension of the
Cauchy residue theorem to locate the roots in each box.

MAXROOT then calls CROOT which uses a second order Newton-Raphson
iteration scheme to improve on the roots located by the CONTOUR set.
CROOT needs reasonably accurate initial guesses so it cannot be used
alone. CROOT is also called later in the program to periodically update
the wave modes of the evolved distributions. In this capacity, it uses
the previously calculated modes as initial guesses.

The root finding routines call CFCTS which is the analytical disper-
sion relation. CFCTS uses the anzlytical form of the ion and electron
dielectrics given by Eqns (20) and (32). Therefore, CFCTS can only be
used in the location of the roots of the initial Maxwellian distributions.

CFCTS calls the set of routines DISP, DISPPR, DISPA, DISPI, DISPF,
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DISPS, GQINTM, and ERF which evaluates the plasma dispersion function.
This is the function tabulated by Fried and Conte.
If the magnetized approach has been selected, CFCTS calls ELDIEL
E which computes the magnetized version of the electron dielectric, Eqn
k (20). ELDIEL also calls the DISP package.
i When GRIDLOC is finished having determined the boundaries of the
I3 plane grid, control returns to the main program, IONION. IONION then
calls the routine GRIDS which calculates the k plane grid for the diffu-

sion coefficient integrals and the velocity mesh for the species distri-
butions. A1l three distributions use the same velocity mesh, and their
corresponding transformations are described in Appendix F. Thus, the

same mesh point refers to three different velocities depending on which

distribution is being referenced. The I’ grid and velocity mesh are

N W ER ST W TR Qror g e veapaee

uniform and held fixed throughout the rest of the program.
BOSS is the next routine called. This routine times an activity
and is called once vwhen entering the activity and again when leaving it.
The routine determines the amount computer time remaining when entering
the activity and terminates the program execution if the activity is
expected to take too long. For this determination, BOSS keeps a running
average of the time the activity takes. In IONION, the activity timed
: is one phase of the evolution. ?
Next, MAXROOT is called directly from IONION for each wave't on the
grid. The fastest growing mode for each k is saved for the evolution

calculation. If no suitable mode is found at a given k, a durmy root

with
: o e (6-1)
. 29
= (6-2)
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is substituted. The dummy roots zero the values of the diffusion coeffi-
cient integrands at their corresbonding locations on the E grid. Hence,
only significantly growing modes will build up in energy and cause diffu-
sfon of particles. This part of the program completes the l1inear insta-
bility problem solution. )
The next routine called is BOLTZMN which places the initial Maxwell-
Boltzman species distributions in their arrays. Each value of a distri-
bution in its array corresponds to a particular velocity mesh point.
VELLOC is called next to locate the evolution control velocity mesh

point. This point is two thermal widths from the inftial maximum of the

air distribution and is at the same angle to the negative Vy axis as the
propagation angle of the initifally fastest growing wave mode. The dis-
tribution slope at this point, which 1ies in the upper resonant region
shown in Fig. 4, is used to control the evolution. The less dense air
distribution is used becauc2 it evolves faster. FSLOPE is then called

to compute %éﬂ or 244 depending on whether the propagatfon angle is :

g s

~greater than 45 degrees or not. The change in the distribution slope is 1
a2 good measure of the change in the growth rate of the fastest growing
mode. The slope cormputed at this time is periodically compared with the
slope during the evolution of the air distribution. When the slope
change becomes too large, the air evolution is stopped so the debris é

f evolution can be brought up to date and the wave modes can be updated.

The restart file routines SAVEIT, ALTER, and EXTEND are called next.

The program can be restarted after the linear solution or after any
phase of the evolutfon using the information on the restart file. The

plotting routine, FPLOT, is also called at this time. This routine calls

| several plotting routines in the AFWL computer system 1ibrary, METALIB.
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The resulting plots are three-dimensional perspective views of the plasma
distributions.

CONSERV is called next. This routine checks for conservation of
matter, momentum, and energy. It also calculates the individual velocity
moments of the distributions. It is called in each phase of the evolu-
tion to check on the progress of the program.

The next routine, EVOLVE, controls the solutions of the species dif-
fusion equations. These solutions are the time evolutions of the species
distributions. EVCOLVE first calls ARRAY for the air distribution to
convert its two-dimensional format into the one-dimensional format needed
by the method of 1ines. It then calls up the GEARB package by calling
CRIVEB and controls the progress of the air evolution by periodic calls
to FSLOPE. When the current phase of the air evolution is finished,
ARRAY is called again to put it back into its orfginal two-dimensional
format. Then, the debris distribution is evolved in a similar manner up
to the same ending time as the air by successive calls to ARRAY, DRIVEB,
and ARRAY. This step completes a phase of the evolution.

The GEARB package consists of the routines DRIVEB, INTERP, STIFFB,
COSET, PSETB, DECBR, and SOLBR. These routines solve the ordinary
differential equation set derived in Appendix F. These routines in turn
call the set of routines DIFFUN, PDB, COEF, DIFCOEF, and COEFINT which
define the equation, the coefficients, and the Jacobian. The inte-

~grands for the diffusion coefficients are constructed in DIFCOEF, and the

integrations are done by COEFINT. COEFINT is designed to run extremely
rapidly because millions of diffusion coefficient integrals must be done
in a typical evolution.

When a phase of the evolution is complete; CONSERV, SAVEIT, FPLOT,
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and BOSS are called to check, save, and output the results. BOSS is
called again to start timing the next phase.

The phase begins by the recalculation of the wave modes using NXTRTS.
Because the jon distributions are no longer Maxwellian, the numerical
form of their dielectrics must be used. NXTRTS controls this updating
by calls to CROOT which locates the new roots. CROOT calls the routine
GENDR which is the dispersion relation. GENDR calls CRTERM which does the
jon dielectric integrals, Eqn (F-50). The electron dielectric is com-
puted by GENDR using the same procedures which are used by CFCTS.

FSLOPE is then called to update the slope of the air distribution.

Finally, the anomalous transport coefficients are computed using ANOMAL.

N RIS O S e LT Jow g e W PR, AT AN

If significantly growing wave modes still exist and the transport coef-
ficients are still increasing, the program loops back to the EVOLVE call i
to continue this phase of the evolution. Otherwise execution terminates
as the program is finished.

Two groups of utility routines are called throughout the program.
The first group is the SNAP set which outputs the value of a variable at
the time the call to SNAP is made. This set is a very useful diagnostic
aid. The other group is SINGRT, SINTRP, and XYZSPLN. These routines

fit a smooth cubic polynomial surface to a function defined by values in

an array. The routines then integrate, differentiate, or interpolate on

asabiiiing

that surface. A1l of the program numerical integrations except those for

the diffusion coefficients are done in this manner.
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Appendix H

Tables of the Dissertation Plasma Distributions

Below are tabulated all of the plasma distributions used in the

dissertation. The parameters 1isted in the tables are as follows:

n - number density

q - units of charge

AMU - atomic mass unfts (atomic weight)

-! V - velocity (in the computer reference frame shown in Fig. 6)

T, - temperature in the x direction

X
E ! Tz - temperature in the 2 direction
; )’Dx - Debye length fn the x direction
: )“Dz - Debye length in the z direction
qu - plasma frequency

. - gyro frequency
OULH - lower hybrid frequency

Larmor radius (gyro radius)

s
-~
]

Vae = ton acoustic speed

Valf © Alfvén speed
Cy - thermal speed in the x direction
c, - thermal speed in the z direction

VR - relative velocity between the debris and air
B - magnetic field
/éi - electron beta
A given distribution is uniquely determined by the selection of densi-
ties, charges, atomic wefghts, and temperatures for the debris and air;

by the selection of the electron temperatures; and by the selection of

the relative velocity and magnetic field strength. The remaining para-
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meters are computed assuming charge neutrality, zero current, and the
individual debris, air, and electron distributions are Maxwellian.

i The air densities and air atomic weight in the last four tables,
Tables H-VI to H-IX, are representative of an assumed predominately

atomic oxygen atmosphere of the earth existing at 200 and 600 km. The

e

debris atomic weight in these four tables is that of aluminum which con-

veniently represents an average of all the materials in the debris of a
high altitude nuclear explosion. The remaining parameters which uniquely
determine these simulation distributions are chosen to approximate the

conditions which could be found in the debris-air mixing region shown in

Fig. 1. 1

_——
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Equal and Opposite Cold Beam Distribution

Table H-1

n q AMU v
(cm'3) (units) (AMU) (cm/sec)
Debris 5.1(1019) 1 20 -9.9(10%)
Afr 5.0(1010) 1 20 1.0(107)
Electron 1.0(1011y 1 5 0
Tx Tz lbx lDz
(ev) (ev) (cm) (cm)
Debris 1 1 3.3(107%) 3.3(107%)
Afr 1 1 3.3(1073) 3.3(10°3)
Electron 2.8(10%) 2.8(10%) 3.9(1071) 3.9(1071)
“p - “In v
(sec"l) (sec'l) (sec'l) (cm)
Debris 6.7(10’) 0 0 o0
Afr 6.6(10) 0 0 oo
Electron 1.8(1010) 0 - co
Vac Vaif Cx 2
(cm/sec) (cm/sec) (em/sec) (em/sec)
Debris 2.6(107) 0 2.2(10°) 2.2(10°)
Afr 2.6(107) 0 2.2(10°) 2.2(10°)
Electron - . 7.0(10%) 7.0(10°)

Vp (cm/sec) = 2.0(107)

B (guass) =
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Table H-II

Bump-on-the-Tail Distribution !

n q AMU y |
(cm'3) (units) (AMU) (cm/sec) |
Debris 1.0(10'1) 1 20 -5.0(10°) |
Adir 1.0(10%) 1 20 5.0(107)
— Electron 1.0(1011) = . = 0
Tx Tz lnx )"Dz 1
(ev) (ev) (cm) (cm) |
Debris 103 100 7.4010%)  7.4007%) |
Air 10° 10 2.4(1071) 2.4(1071) -
Electron 2.8(10%) 2.8(10%) 3.9(10°1) 3.9(10°1) i
t | wf1 JL.l “’l-_;l A ;
-4 (sec” ") (sec ) (sec”™ ") (em)
f Debris 9.3(107) 0 0 i
i Air 9.3(106) 0 0 -—
‘ Electron 1.8(1010) 0 = -0 ;'
i Yac Valf x ‘2 f{
j (cm/sec) (em/sec) (cm/sec) (cm/sec) )
- Debris 3.9(107) 0 6.9(10) 6.9(105) ';
Air 5.3(10°) 0 2.2(10°) 2.2(10°) 5-
Electron . R 7.0(10%) 7.0(10°) :
VR (cm/sec) = 5.0(107)
3 B (guass) = 0

e —8 =
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Table H-111

Magnetized Equal Bean; Distribution

n q AMU y
(cm'3) (units) (ANU) (cm/sec)
Debris 5.1(1010) 1 20 -9.9(10°)
Air 5.0(1010) 1 20 1.0(107)
Electron 1.0(1011) - - 0
Tx Tz sz 2Dz
(ev) (ev) (cm) (cm)
Debris 1 1 3.3(10°9) 3.3(10°°)
Afr 1 1 3.3(10°3) 3.3(1073%)
Electron 1072 1072 2.3(10"H 2.3(10"%)
bty o L 7
(sec'l) (sec'l) (sec'l) (cm)
Debris 6.7(10°) 4.8(10°) 4.7(107) 2.1(101)
Afr 6.6(107) 4.8(10°) 4.7(107) 2.1(101)
Eleetios 1.8(1019) 1.8(1019) N 3.4(10°%)
Yac Valf Cx ¢,
(cm/sec) (cm/sec) (cm/sec) (cm/sec)
Debris 3.8(10°) 2.2(10%) 2.2(10°) 2.2(10°)
Air 3.8(10°) 2.2(108) 2.2(10°) 2.2(10%)
Electron - - 4.2(10%) 4.2(10°)
Vo (cm/sec) = 2.0(107)
B (guass) = 1.0(10%)
= 4.1(10°%)
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Table H-1V

Initial Bump-on-the-Tail Distribution for the Test Evolution

n q AMU y
(cm—3) (units) (AnU) (cm/sec)
Debris 1.0(10; 1 20 -3.0(10°)
Afr 1.0(10°) 1 20 3.0(107)
' Electron 1.0(10'1) - - 0
! Tx Tz 1Dx 2“Dz
(ev) (ev) (cm) (cm)
| Debris 10° 10° 7.4(10°%) 7.4(107%)
Adir 10° 102 2.4(1071) 2.4(1071)
Electron 2.8(10%) 2.8(10%) 3.9(10"1) 3.9(1071)
, «, <1 Ly S
(sec'l) (sec"l) (sec"l) (cm)
' Debris 9.3(107) 0 0 &=
Adr 9.3(10%) 0 0 oo
Electron 1.8(1010) 0 - oo
Vac Vaif % 2
(cm/sec) (cm/sec) (cm/sec) (cm/sec)
Debris 3.9(10") n 6.9(10%) 6.9(10%)
Afr 5.3(10%) 0 2.2(10%) 2.2(10%)
Electron = - 7.0(10%) 7.0(10%)
VR (cm/sec) = 3.0(107)
E B (guass) = O
= o
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Table H-V

Large Relative Velocity Bump-on-the-Tail Distribution

n q AMU y
(cm'3) (units) (AMU) (cm/sec)
Debris 1.0(10'%) 1 20 -9.9(10°)
Afr 1.0(10%) 1 20 9.9(107)
Electron 1.1(10t1) : 2 0
Tx Tz zox 202
(ev) (ev) (cm) (cm)
Debris 10° 10° 7.4(107%) 7.4(10"2)
Air 102 102 2.4(10°1) 2.4(1071)
Electron 2.8(10%) 2.8(10%) 3.9(10°1) 3.9(1071)
“p = “LH v
(sec™]) (sec'l) (sec™1) (cm)
Debris 9.3(107) 0 0 oo
Afr 9.3(10) 0 0 56
Electron 1.8(1019) 0 = &
Vac Valf Cx <2
(cm/sec) (cm/sec) (cm/sec) (cm/sec)
Debris 3.9(10”) 0 6.9(10°) 6.9(10°)
Air 5.3(105) 0 2.2(10%) 2.2(10%)
Electron _ . 7.0(10°%) 7.0(10%)
VR (cm/sec) = 1.0(108)
B (guass) = 0
i @
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Table H-VI

Low Relative Velocity Distribution Simulating 200 km

n q AMU v
(cm'3) (units) (AMU) (cm/sec)
Debris 2.0(10'0) 1 27 -6.7(10%)
Air 1.0(1010) 1 16 1.3(107)
Electron 3.0(1010) - - 0
Tx Tz le 1Dz
(ev) (ev) (cm) (cm)
Debris 5.0(10°) 5.0(102) 1.2(10°1) 1.2(1071)
Rir 5.0(10°) 5.0(102) 1.7(10°1) 1.7(10°])
Electron 1.0(10%) 1.0(10% 4.3(10°]) 4.~"1071)
“p = “Lu it
(sec'l) (sec'l) (sec'l) (cm)
Debris 3.6(107) 0 0 oo
Air 3.3(107) 0 0 -
Electron 9.8(109) 0 = o0
Vac Vaif Cx ¢z
(cm/sec) (cm/sec) (cm/sec) (cm/sec)
Debris 1.7(107) 0 4.2(10%) 4.2(10%)
Air 1.7(107) 0 5.5(10%) 5.5(10°%)
Electron : . 4.2(10%) 8.2(10°%)
VR (cm/sec) = 2.0(107)
B (quass) = 0
e Ly
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Table H-VII

High Relative Velocity Distribution Simulating 200 km

n q AMU v
(em™3) (units) (AMU) (cm/sec)
Debris 2.0(10"0) 1 27 -2.3(10")
Air 1.0(101%) 1 16 4.7(10)
Electron 3.0(1010) - - 0
Tx Tz 7‘Dx RDz
(ev) (ev) (cm) (cm)
Debris 1.0(10%) 1.0(10%) 1.7(10°1) 1.7(10°1)
Air 1.0(10%) 1.0(10%) 2.4(10" 1) 2.4(10°1)
Electron 1.0(10%) 1.0(10%) 4.3(107 1) 4.3(10°1)
“y ~1. “LH L
(sec—l) (sec'l) (sec'l) (cm)
Debris 3.6(107) 0 0 )
Afr 3.3(107) 0 0 oo
Electron 9.8(109) 0 - oo
Vac Valf x ¢,
(cm/sec) (cm/sec) (cm/sec) (cm/sec)
Debris 1.9(107) 0 6.0(10%) 6.0(10)
Air 2.0(107) 0 7.8(10%) 7.8(10%)
Electron - - 4.2(10°%) 2.2(10°)
Vo (cm/sec) = 7.0(107)
B (guass) = 0
pe
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Table H-VIII
Low Relative Velocity Distribution Simulating 600 km

n q AMU v
[ (cm'3) (units) (AMU) (cm/sec) i
: : Debris 2.0(107) 1 27 -6.7(10°)- f
Air 1.0(107) 1 16 1.3(107) !
' ’ Electron 3.0(107) = o 0 3
! Tx Tz 2Dx )‘Dz ‘:
(ev) (ev) (cm) (cm) *
P - Debris 5.0(102) 5.0(10°) 3.7 3.7
P Afr 5.0(102) 5.0(10°) 5.3 5.3
Electron 1.0(163) 1.0(10%) 4.3 1.4(101) |
; wp, 2 “iy L |
'1 (sec™!) (sec'l) (sec™l) (cm) :
t Debris 1.1(10°) 1.8(10%) 1.1(10%) 3.7(10%) |
Atr 1.0(10°) 3.0(10%) 9.9(10%) 4.4(10%)
Electron 3.1(10%) 8.8(10%) 2 2.1 %
Vac Vaif x 5 ‘
(cm/sec) (cm/sec) (cm/sec) (cm/sec)
‘ . Debris 1.4(10") 4.7(10%) 4.2(10%) 4.2(10%)
Afr 1.4(107) g.7(10%) 5.5(10%) 5.5(10°) :
Electron e : 1.3(10%) 4.2(10°) 3
VR (cm/sec) = 2.0(107)
B (guass) = 5.0(101)
' 4.8(10% ;

pe -
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Table H-IX |
High Relative Velocity Distribution Simulating 600 km
n q AMU v
(cm’3) (units) (AMU) (cm/sec) :
Debris 2.0(107) 1 %) -2.3(107) :
Air 1.0(107) 1 16 4.7(107)
Electron 3.0(107) = - 0 |
Tx Tz ;sz ;lDz
(ev) (ev) (cm) (cm)
Debris 1.0(10%) 1.0(10°) 5.3 5.3
Afr 1.0(10%) 1.0(10%) 7.4 7.4 .
Electron 1.0(10%) 1.0(10%) 4.3 1.4(101) N
“p Q2 “n a .;
(sec-l) (sec'l) (sec-l) (cm) i
Debris 1.1(10%) 1.8(10%) 1.1(10%) 1.3(10%) |
Afr 1.0(10%) 3.0(10%) 9.9(10%) 1.5(10%)
Electron 3.1(10%) 8.8(10°) g 2.1
Vac Vaif Cx ¢,
(cm/sec) (cm/sec) (cm/sec) (em/sec)
Debris 1.5(107) 4.7(10%) 6.0(10°) 6.0(10°)
Air 1.7(107) 8.7(10%) 7.8(108) 7.8(10%)
Electron ! - 1.3(10°) 4.2(10°)
VR (cm/sec) = 7.0(107)
B (guass) = 5.0(10%)
A = 4.8(107%)
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Appendix I
Evolution of the Bump-on-the-Tail Instability

The analytical quasilinear solution for the bump-on-the-tail
instability is done using a combined debris and air jon distribution.
The same procedures are used which are employed by Cavidson (Ref 14: 174-
182) in his solution of the equivalent electron bump-on-the-tail problem.
For the test fon problem shown in Table H-1V, the electron temperature is
large enough so the electron dielectric which goes like 1/k22.[2)e (See
Eqns (53), (57), and (58).) is less than one. Therefore, the electrons
can be ignored because their contribution to the dispersion relation,
and hence to the unstable waves causing the time evolution of the ion
distribution, is negligible.

The equations of interest for the fons are from Eqns (10), (11),

and (12):
d .;;r,;f) . 3:)7[ Dl 2,{_8%,1}] (1-1)
afgﬁ»‘) = 2eilh D ECH A (1-2)
F(A A (A, (1-3)

RS
£
= ?#Ly’lé
D(/V‘,j) M‘L‘- [,A,V-—WA(AJj)]szU_‘t(A)j)
where the subscript of has been dropped and the equations are written in

a one-dimensional form.

The diffusion coefficient has two different approximate forms with-

in and outside the resonant region. In the resonant region,
o — o, (A1) RO (1-4)
so the corresponding coefficient {s
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Doy ) = s S (Ll EC4 1> §(arm ol ) (15

where Eqn (F-37), oy (k,t) 2 0, and

o e (L, 4)
w; =0 [ - e, (4, D]+ A S

2 S (hr-cqrd, H) (1-6)

have been used. Outside the resonant region,
[hv - D] >> Tl (1-7)
so the nonresonant form of the coefficient is
a o
e ECL ) «w (b P
Do b ) = o 5 [ 4 (1-8)
Y -) /m"_‘f. ['A”__ C-J,._(A,J‘)]l
The resonant form after the symmetries in Eqns (A-24) and (A-26) are

applied is
2 22"
Dol A = 14D S (lh ECA A SChorn anlhy DY (1-9)

This integration is done by assuming

e, (A +) ~ Cops < Copo (1-10)

o Doyt = 167 B2 L [{(A/)]} (1-11)

This diffusion coefficient is negligible outside the resonant region
because the wave spectral energy does not grow above the background
thermal Tevels.
The approximation in Eqn (I-10) is valid for long wavelength modes
so all but the first term on the right hand side of
Con (A A) = 2 (It Z Ay 400 (1-12)
can be ignored. This is the real part of the Bohm-Gross dispersion

relation which is derived for electrons in Krall and Trivelpiece (Ref
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19: 383-392). The corresponding imaginary part is

Wil = T wn —1}3 [—46%;‘4)] I (1-13)

e S
The long wavelength approximation is a good one for the test distribution

as
AP~ S (1) << (1-14)

for the growing modes of interest.
The resonant form of Eqn (I-1) is
Ofe (1, ) = [ e (1)
= - 2 (1-15)
oA pd P ) o ]
where Dr is given by Eqn (I1-11). The time derivative of Eqn (I-11)
combined with Eqns (1-2), (I-10), and (1-13) is
D b} 9{_ ! 4)
Wl 4> OM[D (s > (1-16)
oA r
where Eqn (I-11) has been used again to eliminate the spectral energy

term. The integral of Eqn (I-16) is I 3
Lo(v 42
[ 1 eopov™[ ans SEGZ0L2]

D, [ #) = D A=0) 2 (1-17)

When Eqns (I-15) and (I-16) are combined and integrated,

dfe( A _ _a_[ ! 904(431)] e

oA o 77’&/,’ oV ot

[ (/V-Jf) D,;(A/‘zf-o)] (1-19)

“pe
Although Eqns (I-17) and (I-19) are the resonant solution, they still

- 2
£o( ) -%(Ag/fxo} +‘—);,_[

are not in a form suitable for a hand calculation. The best approach is

to find the time asymptotic solution.
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The first step in the asymptotic solution is to multiply Eqn (I-15)

by fb(v,t) and integrate with respect to v:

_&L, £l D 2{3_;":_1’ = 5&/.(#,1)3%[04(/51) ééf_}i)] (1-20)

- e 2.
‘%‘f‘?f&[/- (Acf)]1= = fotu- DA(,‘,’,)IQAZS‘_’”:_’)] < o(1-21)

The integrated part resulting from the right hand side of Eqn (I-20)
vanishes because resonant diffusion is negligible outside the resonant
region. Because the time rate of change of a positive quantity is

negative for all time,

Dulrr _;‘_,,.)[ A;{.(/;irj—»oo)]m__jtfo i
Either or both terms can be zero. If
D, (v A—2=)=o0 (1-23)
then from Eqn (I-17),
%""3;-""“) B (1-24)

so the growth rate from Eqn (I-13) becomes negative. Equations (I-19)
and (I-23) also imply

a 04(/")'17‘0) 1-2
folw, A=) = Lol 2> G| 2o

Because the particle energy is much larger than the initial wave energy,

the 1nitial diffusion should be small. Therefore, the second term can

be neglected and

(i, X32) | Lol H20d o (1-26)

o o

A
i
g
4
4
i
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Equations (I-24) and (I-26) contradict so Eqn (I-23) must be incorrect

and

D/o(”, A > o=d

o

= O (1-27)

Thus, the asymptotic behavior of the distribution in the resonant region
is to form a plateau with the wave growth rates going to zero.

The nonresonant diffusion coefficfent, Eqn (I-8), is used to deter-
mine the behavior of the bulk of the distribution (the debris distribu-
tion). Because the phase velocities of the growing waves 1ie in the
resonant velocity range which is much greater than the thermal velocity

of the bulk distribution,
[wCh > - b T~ 0 Ch D ~cwpp ~ cop (1-28)

Therefore, Equation (I-8) becomes

L U o~
D, (4 ) = 317'/;?{-:—; I,LA E(LD e (4 A (1-29)
Don (v, ) = —— ‘—f;sacé E(AD (1-30)

Note the coefficient is independent of velocity. The nonresonant form
of Eqn (I-1) is then:
o () ol 1
- -31)
A - Ll""'(J{) ' o
When 7-(t) is defined as

oo

(A = 2 (db ECAA (1-32)
Equatfon (I-31) becomes
S /vb‘T)
L 3,(1» (1-33)
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The Green's function solution of this equation with an initial Maxwellian

distribution for the bulk plasma 1s

f‘(""/"‘) F Za’nr[x::'ru)] ‘L"'('z-[x‘l‘f'r(,r)] (1-34)

where T is the bulk fon temperature. Note that 3

T >> TCe) for A >> w;' (1-35)

has been assumed. The nonresonant solution, Eqns (I-32) and (I-34),
.! shows that the effective temperature of the bulk of the fons increases
. as the wave energy increases. This increase 1s due to bulk plasma
: | i oscillations induced by the electrostatic waves. A sketch of the final
time asymptotic fon distribution showing both the resonant and non-
resonant changes is included in Fig. 7.
The growth of the wave energfes and the growth of the bulk plasma

oscillatfons is fed by a loss in the energy of the resonant particles

- in the bump. In fact, (Ref 19: 527-532)

3

3 change in change change in :
nonresonant = in total x = A4 X resonant (1-36) q
particle wave 2 particle 1

; energy energy energy :

AR bt L ida 1 e s e 2
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Appendix J

Tables of the Linear Dispersion Relation Solutions

The linear dispersion relation solutions for growing wave modes
are tabulated for all of the distributions which are evolved. The
solutions are for Maxwellian debris, air, and electron distributions so
they are the wave modes which exist at the beginning of an evolution.
An additional dispersion relation solution table, Table J-V, is included
to show a possible mixture of modified tvwo-stream and ion-ion modes.
This table is discussed in the section on magnetized evolutions in
Chapter IV.

In all of the tables, only the growing wave modes in the first

quadrant of the kx-kz plane where
0 < h,y < 0 (9-1)

0 & hy & o0 (3-2)

are included. The modes propagating in the other quadrants of this
plane are related to those tabulated by the equations in Appendix F,
Eqns (F-39), (F-40), and (F-42).

In the tables below, the headings are the components of the wave k
in the x and z directions; the real and imaginary parts of the wave
frequency; and the debris, air, and electron dielectrics evaluated at
the wave frequency. The dielectrics are complex so both the real and
imaginary parts are listed. The row marked with an asterisk is the wave

mode with the largest growth rate. This mode dominates the evolution.
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